Linear maps preserving orbits
- [1] Brandeis University Department of Mathematics Waltham, MA 02454-9110 (USA)
Annales de l’institut Fourier (2012)
- Volume: 62, Issue: 2, page 667-706
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topSchwarz, Gerald W.. "Linear maps preserving orbits." Annales de l’institut Fourier 62.2 (2012): 667-706. <http://eudml.org/doc/251042>.
@article{Schwarz2012,
abstract = {Let $H\subset \operatorname\{GL\}(V)$ be a connected complex reductive group where $V$ is a finite-dimensional complex vector space. Let $v\in V$ and let $G=\lbrace g\in ~\{\rm GL\}(V)\mid gHv = Hv\rbrace $. Following Raïs we say that the orbit $Hv$ is characteristic for $H$ if the identity component of $G$ is $H$. If $H$ is semisimple, we say that $Hv$ is semi-characteristic for $H$ if the identity component of $G$ is an extension of $H$ by a torus. We classify the $H$-orbits which are not (semi)-characteristic in many cases.},
affiliation = {Brandeis University Department of Mathematics Waltham, MA 02454-9110 (USA)},
author = {Schwarz, Gerald W.},
journal = {Annales de l’institut Fourier},
keywords = {Characteristic orbits; linear preserver problems},
language = {eng},
number = {2},
pages = {667-706},
publisher = {Association des Annales de l’institut Fourier},
title = {Linear maps preserving orbits},
url = {http://eudml.org/doc/251042},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Schwarz, Gerald W.
TI - Linear maps preserving orbits
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 2
SP - 667
EP - 706
AB - Let $H\subset \operatorname{GL}(V)$ be a connected complex reductive group where $V$ is a finite-dimensional complex vector space. Let $v\in V$ and let $G=\lbrace g\in ~{\rm GL}(V)\mid gHv = Hv\rbrace $. Following Raïs we say that the orbit $Hv$ is characteristic for $H$ if the identity component of $G$ is $H$. If $H$ is semisimple, we say that $Hv$ is semi-characteristic for $H$ if the identity component of $G$ is an extension of $H$ by a torus. We classify the $H$-orbits which are not (semi)-characteristic in many cases.
LA - eng
KW - Characteristic orbits; linear preserver problems
UR - http://eudml.org/doc/251042
ER -
References
top- Dragomir Ž. Doković, Chi-Kwong Li, Overgroups of some classical linear groups with applications to linear preserver problems, Linear Algebra Appl. 197/198 (1994), 31-61 Zbl0793.15018MR1275607
- Dragomir Ž. Doković, Vladimir P. Platonov, Algebraic groups and linear preserver problems, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), 925-930 Zbl0811.20044MR1249362
- E. B. Dynkin, Maximal subgroups of the classical groups, Trudy Moskov. Mat. Obšč. 1 (1952), 39-166 Zbl0048.01601MR49903
- V. V. Gorbatsevich, A. L. Onishchik, Lie transformation groups [see MR0950861 (89m:22010)], Lie groups and Lie algebras, I 20 (1993), 95-235, Springer, Berlin Zbl0781.22004MR1306739
- Robert M. Guralnick, Invertible preservers and algebraic groups, Proceedings of the 3rd ILAS Conference (Pensacola, FL, 1993) 212/213 (1994), 249-257 Zbl0814.15002MR1306980
- Robert M. Guralnick, Invertible preservers and algebraic groups. II. Preservers of similarity invariants and overgroups of , Linear and Multilinear Algebra 43 (1997), 221-255 Zbl0889.20026MR1613065
- Robert M. Guralnick, Chi-Kwong Li, Invertible preservers and algebraic groups. III. Preservers of unitary similarity (congruence) invariants and overgroups of some unitary subgroups, Linear and Multilinear Algebra 43 (1997), 257-282 Zbl0889.20027MR1613069
- Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, 80 (1978), Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York Zbl0451.53038MR514561
- G. Hochschild, The structure of Lie groups, (1965), Holden-Day Inc., San Francisco Zbl0131.02702MR207883
- N. Jacobson, A note on automorphisms of Lie algebras, Pacific J. Math. 12 (1962), 303-315 Zbl0109.26201MR148716
- Nathan Jacobson, Lie algebras, (1962), Interscience Publishers (a division of John Wiley & Sons), New York-London Zbl0121.27504MR143793
- Nathan Jacobson, Lie algebras, (1979), Dover Publications Inc., New York Zbl0121.27504MR559927
- Chi-Kwong Li, Stephen Pierce, Linear preserver problems, Amer. Math. Monthly 108 (2001), 591-605 Zbl0991.15001MR1862098
- Domingo Luna, Slices étales, Sur les groupes algébriques (1973), 81-105. Bull. Soc. Math. France, Paris, Mémoire 33, Soc. Math. France, Paris Zbl0286.14014MR318167
- Domingo Luna, Adhérences d’orbite et invariants, Invent. Math. 29 (1975), 231-238 Zbl0315.14018MR376704
- Arkadi L. Oniščik, Inclusion relations between transitive compact transformation groups, Trudy Moskov. Mat. Obšč. 11 (1962), 199-242 Zbl0192.12601MR153779
- Arkadi L. Oniščik, Decompositions of reductive Lie groups, Mat. Sb. (N.S.) 80 (122) (1969), 553-599 Zbl0222.22011MR277660
- Arkadi L. Oniščik, Topology of transitive transformation groups, (1994), Johann Ambrosius Barth Verlag GmbH, Leipzig Zbl0796.57001MR1266842
- Vladimir P. Platonov, Dragomir Ž. Doković, Linear preserver problems and algebraic groups, Math. Ann. 303 (1995), 165-184 Zbl0836.20065MR1348361
- Mustapha Raïs, Notes sur la notion d’invariant caractéristique, (2007)
- Gerald W. Schwarz, Algebraic quotients of compact group actions, J. Algebra 244 (2001), 365-378 Zbl0997.14013MR1857750
- Richard P. Stanley, Invariants of finite groups and their applications to combinatorics, Bull. Amer. Math. Soc. (N.S.) 1 (1979), 475-511 Zbl0497.20002MR526968
- Akalu Tefera, What is a Wilf-Zeilberger pair?, Notices Amer. Math. Soc. 57 (2010), 508-509 Zbl1200.05022MR2647850
- M. A. A. van Leeuwen, LiE, a software package for Lie group computations, Euromath Bull. 1 (1994), 83-94 Zbl0807.17001MR1283465
- M. A. A. van Leeuwen, A. M. Cohen, B. Lisser, A package for Lie group computations, (1992), Computer Algebra Nederland, Amsterdam
- È. B. Vinberg, V. L. Popov, A certain class of quasihomogeneous affine varieties, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 749-764 Zbl0248.14014MR313260
- Hermann Weyl, The Classical Groups. Their Invariants and Representations, (1939), Princeton University Press, Princeton, N.J. Zbl1024.20502MR1488158
- Herbert S. Wilf, Doron Zeilberger, Rational functions certify combinatorial identities, J. Amer. Math. Soc. 3 (1990), 147-158 Zbl0695.05004MR1007910
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.