The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Linear maps preserving orbits”

Equations of some wonderful compactifications

Pascal Hivert (2011)

Annales de l’institut Fourier

Similarity:

De Concini and Procesi have defined the wonderful compactification X ¯ of a symmetric space X = G / G σ where G is a complex semisimple adjoint group and G σ the subgroup of fixed points of G by an involution σ . It is a closed subvariety of a Grassmannian of the Lie algebra 𝔤 of G . In this paper we prove that, when the rank of X is equal to the rank of G , the variety is defined by linear equations. The set of equations expresses the fact that the invariant alternate trilinear form w on 𝔤 vanishes...

The higher transvectants are redundant

Abdelmalek Abdesselam, Jaydeep Chipalkatti (2009)

Annales de l’institut Fourier

Similarity:

Let A , B denote generic binary forms, and let 𝔲 r = ( A , B ) r denote their r -th transvectant in the sense of classical invariant theory. In this paper we classify all the quadratic syzygies between the { 𝔲 r } . As a consequence, we show that each of the higher transvectants { 𝔲 r : r 2 } is redundant in the sense that it can be completely recovered from 𝔲 0 and 𝔲 1 . This result can be geometrically interpreted in terms of the incomplete Segre imbedding. The calculations rely upon the Cauchy exact sequence of S L 2 -representations,...

Effective equidistribution of S-integral points on symmetric varieties

Yves Benoist, Hee Oh (2012)

Annales de l’institut Fourier

Similarity:

Let K be a global field of characteristic not 2. Let Z = H G be a symmetric variety defined over K and S a finite set of places of K . We obtain counting and equidistribution results for the S-integral points of Z . Our results are effective when K is a number field.

Adjoint representation of E 8 and del Pezzo surfaces of degree 1

Vera V. Serganova, Alexei N. Skorobogatov (2011)

Annales de l’institut Fourier

Similarity:

Let X be a del Pezzo surface of degree 1 , and let G be the simple Lie group of type E 8 . We construct a locally closed embedding of a universal torsor over X into the G -orbit of the highest weight vector of the adjoint representation. This embedding is equivariant with respect to the action of the Néron-Severi torus T of X identified with a maximal torus of G extended by the group of scalars. Moreover, the T -invariant hyperplane sections of the torsor defined by the roots of G are the...

Decomposition of reductive regular Prehomogeneous Vector Spaces

Hubert Rubenthaler (2011)

Annales de l’institut Fourier

Similarity:

Let ( G , V ) be a regular prehomogeneous vector space (abbreviated to P V ), where G is a reductive algebraic group over . If V = i = 1 n V i is a decomposition of V into irreducible representations, then, in general, the PV’s ( G , V i ) are no longer regular. In this paper we introduce the notion of quasi-irreducible P V (abbreviated to Q -irreducible), and show first that for completely Q -reducible P V ’s, the Q -isotypic components are intrinsically defined, as in ordinary representation theory. We also show that, in an...