Radiative Heating of a Glass Plate
Luc Paquet[1]; Raouf El Cheikh[2]; Dominique Lochegnies[2]; Norbert Siedow[3]
- [1] Univ. Lille Nord de France UVHC-ISTV, LAMAV-EDP FR no 2956, 59313 Valenciennes, France (Author to whom all correspondence should be addressed)
- [2] Univ. Lille Nord de France UVHC-ISTV, TEMPO, 59313 Valenciennes, France
- [3] Fraunhofer Institute for Industrial Mathematics, ITWM, 67663 Kaiserlautern, Germany
MathematicS In Action (2012)
- Volume: 5, Issue: 1, page 1-30
- ISSN: 2102-5754
Access Full Article
topAbstract
topHow to cite
topPaquet, Luc, et al. "Radiative Heating of a Glass Plate." MathematicS In Action 5.1 (2012): 1-30. <http://eudml.org/doc/251048>.
@article{Paquet2012,
abstract = {This paper aims to prove existence and uniqueness of a solution to the coupling of a nonlinear heat equation with nonlinear boundary conditions with the exact radiative transfer equation, assuming the absorption coefficient $\kappa (\lambda )$ to be piecewise constant and null for small values of the wavelength $\lambda $ as in the paper of N. Siedow, T. Grosan, D. Lochegnies, E. Romero, “Application of a New Method for Radiative Heat Tranfer to Flat Glass Tempering”, J. Am. Ceram. Soc., 88(8):2181-2187 (2005). An important observation is that for a fixed value of the wavelength $\lambda $, Planck function is a Lipschitz function with respect to the temperature. Using this fact, we deduce that the solution is at most unique. To prove existence of a solution, we define a fixed point problem related to our initial boundary value problem to which we apply Schauder theorem in a closed convex subset of the Banach separable space $L^\{2\}(0,t_\{f\};C([0,l]))$. We use also Stampacchia truncation method to derive lower and upper bounds on the solution.},
affiliation = {Univ. Lille Nord de France UVHC-ISTV, LAMAV-EDP FR no 2956, 59313 Valenciennes, France (Author to whom all correspondence should be addressed); Univ. Lille Nord de France UVHC-ISTV, TEMPO, 59313 Valenciennes, France; Univ. Lille Nord de France UVHC-ISTV, TEMPO, 59313 Valenciennes, France; Fraunhofer Institute for Industrial Mathematics, ITWM, 67663 Kaiserlautern, Germany},
author = {Paquet, Luc, El Cheikh, Raouf, Lochegnies, Dominique, Siedow, Norbert},
journal = {MathematicS In Action},
keywords = {elementary pencil of rays; Planck function; radiative transfer equation; glass plate; nonlinear heat-conduction equation; Stampacchia truncation method; Schauder theorem; Vitali theorem},
language = {eng},
number = {1},
pages = {1-30},
publisher = {Société de Mathématiques Appliquées et Industrielles},
title = {Radiative Heating of a Glass Plate},
url = {http://eudml.org/doc/251048},
volume = {5},
year = {2012},
}
TY - JOUR
AU - Paquet, Luc
AU - El Cheikh, Raouf
AU - Lochegnies, Dominique
AU - Siedow, Norbert
TI - Radiative Heating of a Glass Plate
JO - MathematicS In Action
PY - 2012
PB - Société de Mathématiques Appliquées et Industrielles
VL - 5
IS - 1
SP - 1
EP - 30
AB - This paper aims to prove existence and uniqueness of a solution to the coupling of a nonlinear heat equation with nonlinear boundary conditions with the exact radiative transfer equation, assuming the absorption coefficient $\kappa (\lambda )$ to be piecewise constant and null for small values of the wavelength $\lambda $ as in the paper of N. Siedow, T. Grosan, D. Lochegnies, E. Romero, “Application of a New Method for Radiative Heat Tranfer to Flat Glass Tempering”, J. Am. Ceram. Soc., 88(8):2181-2187 (2005). An important observation is that for a fixed value of the wavelength $\lambda $, Planck function is a Lipschitz function with respect to the temperature. Using this fact, we deduce that the solution is at most unique. To prove existence of a solution, we define a fixed point problem related to our initial boundary value problem to which we apply Schauder theorem in a closed convex subset of the Banach separable space $L^{2}(0,t_{f};C([0,l]))$. We use also Stampacchia truncation method to derive lower and upper bounds on the solution.
LA - eng
KW - elementary pencil of rays; Planck function; radiative transfer equation; glass plate; nonlinear heat-conduction equation; Stampacchia truncation method; Schauder theorem; Vitali theorem
UR - http://eudml.org/doc/251048
ER -
References
top- A. Ancona, “Continuité des contractions dans les espaces de Dirichlet”, 563 (1976), Springer-Verlag Zbl0341.31006MR588389
- H. Brézis, “Analyse fonctionnelle Théorie et applications”, (1993), Masson, Paris Zbl0511.46001MR697382
- D. Clever, J. Lang, Optimal Control of Radiative Heat Transfer in Glass Cooling with Restrictions on the Temperature Gradient, Optim. Control Appl. Meth. (2011) Zbl1258.49066MR2910090
- L. Dautray, J.-L. Lions, “Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques Volume 8 Evolution: semi-groupe, variationnel”, (1988), Masson, Paris Zbl0749.35004
- F. Desvignes, “Rayonnements optiques Radiométrie-Photométrie”, (1991), Masson, Paris
- P.-E. Druet, Weak solutions to a time-dependent heat equation with nonlocal radiation boundary condition and arbitrary p-summable right-hand side, Applications of Mathematics 55 (2010), 111-149 Zbl1224.35057MR2600939
- L.C. Evans, “Partial Differential Equations”, GSM 19 (1999), AMS Providence, Rhode Island Zbl0902.35002MR1625845
- A. Friedman, “Partial Differential Equations”, (1976), Robert E. Krieger Publishing Company MR454266
- M. Hinze, R. Pinnau, M. Ulbrich, S. Ulbrich, “Optimization with PDE constraints”, (2009), Springer Zbl1167.49001MR2516528
- H.C. Hottel, A.F. Sarofim, “Radiative Transfer”, (1967), McGraw-Hill Book Company
- D. Kinderlehrer, G. Stampacchia, “An Introduction to Variational Inequalities and their Applications”, (1980), Academic Press Zbl0457.35001MR567696
- O.A. Ladyzenskaja, V.A. Solonnikov, N.N. Uralceva, “Linear and Quasilinear Equations of Parabolic Type”, 23 (1968), Translations of Mathematical Monographs, AMS Providence MR241822
- L.T. Laitinen, “Mathematical modelling of conductive-radiative heat transfer”, (2000), Finland
- M.T. Laitinen, T. Tiihonen, Integro-differential equation modelling heat transfer in conducting, radiating and semitransparent materials, Math. Methods Appl. Sci. 21 (1998), 375-392 Zbl0958.80003MR1608072
- J. Lang, Adaptive computation for boundary control of radiative heat transfer in glass, Journal of Computational and Applied Mathematics 183 (2005), 312-326 Zbl1100.65073MR2158803
- J.-L. Lions, “Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires”, (1967), Dunod, Paris Zbl0189.40603
- A. Maréchal, Optique Géométrique Générale, in Encyclopedia of Physics, volume XXIV: Fundamentals of Optics with 761 figures, edited by S. Flügge, 24 (1956), 44-170
- C.-M. Marle, “Mesures et probabilités”, (1974), Hermann Zbl0306.28001MR486378
- C. Meyer, P. Philip, F. Tröltzsch, Optimal control of a semilinear PDE with nonlocal radiation interface conditions, SIAM J. Control Optim. 45 (2006), 699-721 Zbl1109.49026MR2246096
- M.F. Modest, “Radiative Heat Transfer”, (2003), Academic Press Zbl1042.76592
- D. Pascali, S. Sburlan, “Non linear mappings of monotone type”, (1978), Editura Academiei, Bucuresti, Romania, Sijthoff & Noordhoff International Publishers Zbl0423.47021
- R. Pinnau, Analysis of optimal boundary control for radiative heat ransfer modeled by the SP-system, Communications in Mathematical Sciences 5,4 (2007), 951-969 Zbl1145.49015MR2375055
- M. Planck, “The theory of Heat Radiation”, (1991), Dover Publications Inc. Zbl0127.21701MR111466
- M. Reed, B. Simon, “Methods of Modern Mathematical Physics I: Functional analysis”, (1972), Academic Press Zbl0459.46001MR493419
- N. Siedow, T. Grosan, D. Lochegnies, E. Romero, Application of a New Method for Radiative Heat Tranfer to Flat Glass Tempering, J. Am. Ceram. Soc. 88 (2005), 2181-2187
- L. Soudre, “Etude numérique et expérimentale du thermoformage d’une plaque de verre”, (2009), France
- J. Taine, E. Iacona, J.-P. Petit, “Transferts Thermiques Introduction aux transferts d’énergie”, (2008), Dunod
- J. Taine, J.-P. Petit, “Heat Transfer”, (1993), Prentice Hall Zbl0818.73001
- K. Yosida, “Functional Analysis”, (1971), Springer-Verlag Zbl0217.16001
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.