Quantum isometries and group dual subgroups
Teodor Banica[1]; Jyotishman Bhowmick[2]; Kenny De Commer[1]
- [1] Department of Mathematics Cergy-Pontoise University 95000 Cergy-Pontoise FRANCE
- [2] Department of Mathematics University of Oslo Blindern, N-0315 Oslo NORWAY
Annales mathématiques Blaise Pascal (2012)
- Volume: 19, Issue: 1, page 1-27
- ISSN: 1259-1734
Access Full Article
topAbstract
topHow to cite
topBanica, Teodor, Bhowmick, Jyotishman, and De Commer, Kenny. "Quantum isometries and group dual subgroups." Annales mathématiques Blaise Pascal 19.1 (2012): 1-27. <http://eudml.org/doc/251054>.
@article{Banica2012,
abstract = {We study the discrete groups $\Lambda $ whose duals embed into a given compact quantum group, $\widehat\{\Lambda \}\subset G$. In the matrix case $G\subset U_n^+$ the embedding condition is equivalent to having a quotient map $\Gamma _U\rightarrow \Lambda $, where $F=\lbrace \Gamma _U\mid U\in U_n\rbrace $ is a certain family of groups associated to $G$. We develop here a number of techniques for computing $F$, partly inspired from Bichon’s classification of group dual subgroups $\widehat\{\Lambda \}\subset S_n^+$. These results are motivated by Goswami’s notion of quantum isometry group, because a compact connected Riemannian manifold cannot have non-abelian group dual isometries.},
affiliation = {Department of Mathematics Cergy-Pontoise University 95000 Cergy-Pontoise FRANCE; Department of Mathematics University of Oslo Blindern, N-0315 Oslo NORWAY; Department of Mathematics Cergy-Pontoise University 95000 Cergy-Pontoise FRANCE},
author = {Banica, Teodor, Bhowmick, Jyotishman, De Commer, Kenny},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Quantum isometry; Diagonal subgroup; quantum isometry; diagonal subgroup},
language = {eng},
month = {1},
number = {1},
pages = {1-27},
publisher = {Annales mathématiques Blaise Pascal},
title = {Quantum isometries and group dual subgroups},
url = {http://eudml.org/doc/251054},
volume = {19},
year = {2012},
}
TY - JOUR
AU - Banica, Teodor
AU - Bhowmick, Jyotishman
AU - De Commer, Kenny
TI - Quantum isometries and group dual subgroups
JO - Annales mathématiques Blaise Pascal
DA - 2012/1//
PB - Annales mathématiques Blaise Pascal
VL - 19
IS - 1
SP - 1
EP - 27
AB - We study the discrete groups $\Lambda $ whose duals embed into a given compact quantum group, $\widehat{\Lambda }\subset G$. In the matrix case $G\subset U_n^+$ the embedding condition is equivalent to having a quotient map $\Gamma _U\rightarrow \Lambda $, where $F=\lbrace \Gamma _U\mid U\in U_n\rbrace $ is a certain family of groups associated to $G$. We develop here a number of techniques for computing $F$, partly inspired from Bichon’s classification of group dual subgroups $\widehat{\Lambda }\subset S_n^+$. These results are motivated by Goswami’s notion of quantum isometry group, because a compact connected Riemannian manifold cannot have non-abelian group dual isometries.
LA - eng
KW - Quantum isometry; Diagonal subgroup; quantum isometry; diagonal subgroup
UR - http://eudml.org/doc/251054
ER -
References
top- T. Banica, Symmetries of a generic coaction, Math. Ann. 314 (1999), 763-780 Zbl0928.46038MR1709109
- T. Banica, J. Bichon, Quantum automorphism groups of vertex-transitive graphs of order , J. Algebraic Combin. 26 (2007), 83-105 Zbl1125.05049MR2335703
- T. Banica, D. Goswami, Quantum isometries and noncommutative spheres, Comm. Math. Phys. 298 (2010), 343-356 Zbl1204.58004MR2669439
- T. Banica, A. Skalski, Quantum isometry groups of duals of free powers of cyclic groups Zbl1244.58002
- T. Banica, A. Skalski, Quantum symmetry groups of C-algebras equipped with orthogonal filtrations Zbl1276.46057
- T. Banica, R. Speicher, Liberation of orthogonal Lie groups, Adv. Math. 222 (2009), 1461-1501 Zbl1247.46064MR2554941
- T. Banica, R. Vergnioux, Invariants of the half-liberated orthogonal group, Ann. Inst. Fourier 60 (2010), 2137-2164 Zbl1277.46040MR2791653
- J. Bhowmick, Quantum isometry group of the -tori, Proc. Amer. Math. Soc. 137 (2009), 3155-3161 Zbl1172.58001MR2506475
- J. Bhowmick, D. Goswami, Quantum group of orientation preserving Riemannian isometries, J. Funct. Anal. 257 (2009), 2530-2572 Zbl1180.58005MR2555012
- J. Bhowmick, D. Goswami, Quantum isometry groups: examples and computations, Comm. Math. Phys. 285 (2009), 421-444 Zbl1159.81028MR2461983
- J. Bhowmick, D. Goswami, Quantum isometry groups of the Podlés spheres, J. Funct. Anal. 258 (2010), 2937-2960 Zbl1210.58005MR2595730
- J. Bhowmick, A. Skalski, Quantum isometry groups of noncommutative manifolds associated to group -algebras, J. Geom. Phys. 60 (2010), 1474-1489 Zbl1194.58004MR2661151
- J. Bichon, Free wreath product by the quantum permutation group, Alg. Rep. Theory 7 (2004), 343-362 Zbl1112.46313MR2096666
- J. Bichon, Algebraic quantum permutation groups, Asian-Eur. J. Math. 1 (2008), 1-13 Zbl1170.16028MR2400296
- F. Boca, Ergodic actions of compact matrix pseudogroups on C-algebras, Astérisque 232 (1995), 93-109 Zbl0842.46039MR1372527
- B. Collins, P. Śniady, Integration with respect to the Haar measure on unitary, orthogonal and symplectic groups, Comm. Math. Phys. 264 (2006), 773-795 Zbl1108.60004MR2217291
- K. De Commer, On projective representations for compact quantum groups, J. Funct. Anal. 260 (2011), 3596-3644 Zbl1279.46051MR2781971
- Alain Connes, Noncommutative geometry, (1994), Academic Press Inc., San Diego, CA Zbl0818.46076MR1303779
- Alain Connes, Matilde Marcolli, Noncommutative geometry, quantum fields and motives, 55 (2008), American Mathematical Society, Providence, RI Zbl1159.58004MR2371808
- V. Drinfeld, Quantum groups, Proc. ICM Berkeley (1986), 798-820 Zbl0667.16003MR934283
- U. Franz, A. Skalski, On idempotent states on quantum groups, J. Algebra 322 (2009), 1774-1802 Zbl1176.43005MR2543634
- D. Goswami, Quantum symmetries and quantum isometries of compact metric spaces
- D. Goswami, Rigidity of action of compact quantum groups Zbl1312.81100
- D. Goswami, Quantum group of isometries in classical and noncommutative geometry, Comm. Math. Phys. 285 (2009), 141-160 Zbl1228.81188MR2453592
- P. Hajac, T. Masuda, Quantum double-torus, C. R. Acad. Sci. Paris Ser. I Math 327 (1998), 553-558 Zbl0973.17013MR1650603
- H. Huang, Faithful compact quantum group actions on connected compact metrizable spaces Zbl1291.46065
- B. Das J. Bhowmick, L. Dabrowski, Quantum gauge symmetries in noncommutative geometry
- D. Goswami J. Bhowmick, A. Skalski, Quantum isometry groups of 0-dimensional manifolds, Trans. Amer. Math. Soc. 363 (2011), 901-921 Zbl1213.58004MR2728589
- F. D’Andrea J. Bhowmick, L. Dabrowski, Quantum isometries of the finite noncommutative geometry of the standard model, Comm. Math. Phys. 307 (2011), 101-131 MR2835874
- M. Jimbo, A -difference analog of and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985), 63-69 Zbl0587.17004MR797001
- V.F.R. Jones, Planar algebras I
- G.I. Kac, V.G. Paljutkin, Finite ring groups, Trans. Moscow Math. Soc. 1 (1966), 251-294 Zbl0218.43005MR208401
- Y. Kawada, K. Itô, On the probability distribution on a compact group I, Proc. Phys.-Math. Soc. Japan 22 (1940), 977-998 Zbl66.0544.04MR3462
- J. Liszka-Dalecki, P.M. Soł tan, Quantum isometry groups of symmetric groups Zbl1279.58003
- A.K. Pal, A counterexample on idempotent states on compact quantum groups, Lett. Math. Phys. 37 (1996), 75-77 Zbl0849.17010MR1392148
- J. Quaegebeur, M. Sabbe, Isometric coactions of compact quantum groups on compact quantum metric spaces Zbl1277.46038
- S. Raum, Isomorphisms and fusion rules of orthogonal free quantum groups and their complexifications Zbl1279.46052
- Y. Sekine, An example of finite-dimensional Kac algebras of Kac-Paljutkin type, Proc. Amer. Math. Soc. 124 (1996), 1139-1147 Zbl0845.46031MR1307564
- R. Speicher, Multiplicative functions on the lattice of noncrossing partitions and free convolution, Math. Ann. 298 (1994), 611-628 Zbl0791.06010MR1268597
- A. Skalski T. Banica, P.M. Soł tan, Noncommutative homogeneous spaces: the matrix case, J. Geom. Phys. 62 (2012), 1451-1466 Zbl1256.46038
- S. Curran T. Banica, R. Speicher, Classification results for easy quantum groups, Pacific J. Math. 247 (2010), 1-26 Zbl1208.46068MR2718205
- D. V. Voiculescu, K. J. Dykema, A. Nica, Free random variables, 1 (1992), American Mathematical Society, Providence, RI Zbl0795.46049MR1217253
- S. Wang, Free products of compact quantum groups, Comm. Math. Phys. 167 (1995), 671-692 Zbl0838.46057MR1316765
- S. Wang, Quantum symmetry groups of finite spaces, Comm. Math. Phys. 195 (1998), 195-211 Zbl1013.17008MR1637425
- S. Wang, Simple compact quantum groups, I, J. Funct. Anal. 256 (2009), 3313-3341 Zbl1176.46063MR2504527
- S.L. Woronowicz, Compact matrix pseudogroups, Comm. Math. Phys. 111 (1987), 613-665 Zbl0627.58034MR901157
- S.L. Woronowicz, Tannaka-Krein duality for compact matrix pseudogroups. Twisted groups, Invent. Math. 93 (1988), 35-76 Zbl0664.58044MR943923
- S.L. Woronowicz, Compact quantum groups, “Symétries quantiques”, North-Holland (1998), 845-884 Zbl0997.46045MR1616348
- S.-T. Yau, Open problems in geometry, Proc. Symp. Pure Math. 54 (1993), 1-28 Zbl0801.53001MR1216573
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.