Quantum isometries and group dual subgroups

Teodor Banica[1]; Jyotishman Bhowmick[2]; Kenny De Commer[1]

  • [1] Department of Mathematics Cergy-Pontoise University 95000 Cergy-Pontoise FRANCE
  • [2] Department of Mathematics University of Oslo Blindern, N-0315 Oslo NORWAY

Annales mathématiques Blaise Pascal (2012)

  • Volume: 19, Issue: 1, page 1-27
  • ISSN: 1259-1734

Abstract

top
We study the discrete groups Λ whose duals embed into a given compact quantum group, Λ ^ G . In the matrix case G U n + the embedding condition is equivalent to having a quotient map Γ U Λ , where F = { Γ U U U n } is a certain family of groups associated to G . We develop here a number of techniques for computing F , partly inspired from Bichon’s classification of group dual subgroups Λ ^ S n + . These results are motivated by Goswami’s notion of quantum isometry group, because a compact connected Riemannian manifold cannot have non-abelian group dual isometries.

How to cite

top

Banica, Teodor, Bhowmick, Jyotishman, and De Commer, Kenny. "Quantum isometries and group dual subgroups." Annales mathématiques Blaise Pascal 19.1 (2012): 1-27. <http://eudml.org/doc/251054>.

@article{Banica2012,
abstract = {We study the discrete groups $\Lambda $ whose duals embed into a given compact quantum group, $\widehat\{\Lambda \}\subset G$. In the matrix case $G\subset U_n^+$ the embedding condition is equivalent to having a quotient map $\Gamma _U\rightarrow \Lambda $, where $F=\lbrace \Gamma _U\mid U\in U_n\rbrace $ is a certain family of groups associated to $G$. We develop here a number of techniques for computing $F$, partly inspired from Bichon’s classification of group dual subgroups $\widehat\{\Lambda \}\subset S_n^+$. These results are motivated by Goswami’s notion of quantum isometry group, because a compact connected Riemannian manifold cannot have non-abelian group dual isometries.},
affiliation = {Department of Mathematics Cergy-Pontoise University 95000 Cergy-Pontoise FRANCE; Department of Mathematics University of Oslo Blindern, N-0315 Oslo NORWAY; Department of Mathematics Cergy-Pontoise University 95000 Cergy-Pontoise FRANCE},
author = {Banica, Teodor, Bhowmick, Jyotishman, De Commer, Kenny},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Quantum isometry; Diagonal subgroup; quantum isometry; diagonal subgroup},
language = {eng},
month = {1},
number = {1},
pages = {1-27},
publisher = {Annales mathématiques Blaise Pascal},
title = {Quantum isometries and group dual subgroups},
url = {http://eudml.org/doc/251054},
volume = {19},
year = {2012},
}

TY - JOUR
AU - Banica, Teodor
AU - Bhowmick, Jyotishman
AU - De Commer, Kenny
TI - Quantum isometries and group dual subgroups
JO - Annales mathématiques Blaise Pascal
DA - 2012/1//
PB - Annales mathématiques Blaise Pascal
VL - 19
IS - 1
SP - 1
EP - 27
AB - We study the discrete groups $\Lambda $ whose duals embed into a given compact quantum group, $\widehat{\Lambda }\subset G$. In the matrix case $G\subset U_n^+$ the embedding condition is equivalent to having a quotient map $\Gamma _U\rightarrow \Lambda $, where $F=\lbrace \Gamma _U\mid U\in U_n\rbrace $ is a certain family of groups associated to $G$. We develop here a number of techniques for computing $F$, partly inspired from Bichon’s classification of group dual subgroups $\widehat{\Lambda }\subset S_n^+$. These results are motivated by Goswami’s notion of quantum isometry group, because a compact connected Riemannian manifold cannot have non-abelian group dual isometries.
LA - eng
KW - Quantum isometry; Diagonal subgroup; quantum isometry; diagonal subgroup
UR - http://eudml.org/doc/251054
ER -

References

top
  1. T. Banica, Symmetries of a generic coaction, Math. Ann. 314 (1999), 763-780 Zbl0928.46038MR1709109
  2. T. Banica, J. Bichon, Quantum automorphism groups of vertex-transitive graphs of order 11 , J. Algebraic Combin. 26 (2007), 83-105 Zbl1125.05049MR2335703
  3. T. Banica, D. Goswami, Quantum isometries and noncommutative spheres, Comm. Math. Phys. 298 (2010), 343-356 Zbl1204.58004MR2669439
  4. T. Banica, A. Skalski, Quantum isometry groups of duals of free powers of cyclic groups Zbl1244.58002
  5. T. Banica, A. Skalski, Quantum symmetry groups of C * -algebras equipped with orthogonal filtrations Zbl1276.46057
  6. T. Banica, R. Speicher, Liberation of orthogonal Lie groups, Adv. Math. 222 (2009), 1461-1501 Zbl1247.46064MR2554941
  7. T. Banica, R. Vergnioux, Invariants of the half-liberated orthogonal group, Ann. Inst. Fourier 60 (2010), 2137-2164 Zbl1277.46040MR2791653
  8. J. Bhowmick, Quantum isometry group of the n -tori, Proc. Amer. Math. Soc. 137 (2009), 3155-3161 Zbl1172.58001MR2506475
  9. J. Bhowmick, D. Goswami, Quantum group of orientation preserving Riemannian isometries, J. Funct. Anal. 257 (2009), 2530-2572 Zbl1180.58005MR2555012
  10. J. Bhowmick, D. Goswami, Quantum isometry groups: examples and computations, Comm. Math. Phys. 285 (2009), 421-444 Zbl1159.81028MR2461983
  11. J. Bhowmick, D. Goswami, Quantum isometry groups of the Podlés spheres, J. Funct. Anal. 258 (2010), 2937-2960 Zbl1210.58005MR2595730
  12. J. Bhowmick, A. Skalski, Quantum isometry groups of noncommutative manifolds associated to group C * -algebras, J. Geom. Phys. 60 (2010), 1474-1489 Zbl1194.58004MR2661151
  13. J. Bichon, Free wreath product by the quantum permutation group, Alg. Rep. Theory 7 (2004), 343-362 Zbl1112.46313MR2096666
  14. J. Bichon, Algebraic quantum permutation groups, Asian-Eur. J. Math. 1 (2008), 1-13 Zbl1170.16028MR2400296
  15. F. Boca, Ergodic actions of compact matrix pseudogroups on C * -algebras, Astérisque 232 (1995), 93-109 Zbl0842.46039MR1372527
  16. B. Collins, P. Śniady, Integration with respect to the Haar measure on unitary, orthogonal and symplectic groups, Comm. Math. Phys. 264 (2006), 773-795 Zbl1108.60004MR2217291
  17. K. De Commer, On projective representations for compact quantum groups, J. Funct. Anal. 260 (2011), 3596-3644 Zbl1279.46051MR2781971
  18. Alain Connes, Noncommutative geometry, (1994), Academic Press Inc., San Diego, CA Zbl0818.46076MR1303779
  19. Alain Connes, Matilde Marcolli, Noncommutative geometry, quantum fields and motives, 55 (2008), American Mathematical Society, Providence, RI Zbl1159.58004MR2371808
  20. V. Drinfeld, Quantum groups, Proc. ICM Berkeley (1986), 798-820 Zbl0667.16003MR934283
  21. U. Franz, A. Skalski, On idempotent states on quantum groups, J. Algebra 322 (2009), 1774-1802 Zbl1176.43005MR2543634
  22. D. Goswami, Quantum symmetries and quantum isometries of compact metric spaces 
  23. D. Goswami, Rigidity of action of compact quantum groups Zbl1312.81100
  24. D. Goswami, Quantum group of isometries in classical and noncommutative geometry, Comm. Math. Phys. 285 (2009), 141-160 Zbl1228.81188MR2453592
  25. P. Hajac, T. Masuda, Quantum double-torus, C. R. Acad. Sci. Paris Ser. I Math 327 (1998), 553-558 Zbl0973.17013MR1650603
  26. H. Huang, Faithful compact quantum group actions on connected compact metrizable spaces Zbl1291.46065
  27. B. Das J. Bhowmick, L. Dabrowski, Quantum gauge symmetries in noncommutative geometry 
  28. D. Goswami J. Bhowmick, A. Skalski, Quantum isometry groups of 0-dimensional manifolds, Trans. Amer. Math. Soc. 363 (2011), 901-921 Zbl1213.58004MR2728589
  29. F. D’Andrea J. Bhowmick, L. Dabrowski, Quantum isometries of the finite noncommutative geometry of the standard model, Comm. Math. Phys. 307 (2011), 101-131 MR2835874
  30. M. Jimbo, A q -difference analog of U ( g ) and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985), 63-69 Zbl0587.17004MR797001
  31. V.F.R. Jones, Planar algebras I 
  32. G.I. Kac, V.G. Paljutkin, Finite ring groups, Trans. Moscow Math. Soc. 1 (1966), 251-294 Zbl0218.43005MR208401
  33. Y. Kawada, K. Itô, On the probability distribution on a compact group I, Proc. Phys.-Math. Soc. Japan 22 (1940), 977-998 Zbl66.0544.04MR3462
  34. J. Liszka-Dalecki, P.M. Soł tan, Quantum isometry groups of symmetric groups Zbl1279.58003
  35. A.K. Pal, A counterexample on idempotent states on compact quantum groups, Lett. Math. Phys. 37 (1996), 75-77 Zbl0849.17010MR1392148
  36. J. Quaegebeur, M. Sabbe, Isometric coactions of compact quantum groups on compact quantum metric spaces Zbl1277.46038
  37. S. Raum, Isomorphisms and fusion rules of orthogonal free quantum groups and their complexifications Zbl1279.46052
  38. Y. Sekine, An example of finite-dimensional Kac algebras of Kac-Paljutkin type, Proc. Amer. Math. Soc. 124 (1996), 1139-1147 Zbl0845.46031MR1307564
  39. R. Speicher, Multiplicative functions on the lattice of noncrossing partitions and free convolution, Math. Ann. 298 (1994), 611-628 Zbl0791.06010MR1268597
  40. A. Skalski T. Banica, P.M. Soł tan, Noncommutative homogeneous spaces: the matrix case, J. Geom. Phys. 62 (2012), 1451-1466 Zbl1256.46038
  41. S. Curran T. Banica, R. Speicher, Classification results for easy quantum groups, Pacific J. Math. 247 (2010), 1-26 Zbl1208.46068MR2718205
  42. D. V. Voiculescu, K. J. Dykema, A. Nica, Free random variables, 1 (1992), American Mathematical Society, Providence, RI Zbl0795.46049MR1217253
  43. S. Wang, Free products of compact quantum groups, Comm. Math. Phys. 167 (1995), 671-692 Zbl0838.46057MR1316765
  44. S. Wang, Quantum symmetry groups of finite spaces, Comm. Math. Phys. 195 (1998), 195-211 Zbl1013.17008MR1637425
  45. S. Wang, Simple compact quantum groups, I, J. Funct. Anal. 256 (2009), 3313-3341 Zbl1176.46063MR2504527
  46. S.L. Woronowicz, Compact matrix pseudogroups, Comm. Math. Phys. 111 (1987), 613-665 Zbl0627.58034MR901157
  47. S.L. Woronowicz, Tannaka-Krein duality for compact matrix pseudogroups. Twisted S U ( N ) groups, Invent. Math. 93 (1988), 35-76 Zbl0664.58044MR943923
  48. S.L. Woronowicz, Compact quantum groups, “Symétries quantiques”, North-Holland (1998), 845-884 Zbl0997.46045MR1616348
  49. S.-T. Yau, Open problems in geometry, Proc. Symp. Pure Math. 54 (1993), 1-28 Zbl0801.53001MR1216573

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.