Invariants of the half-liberated orthogonal group

Teodor Banica[1]; Roland Vergnioux[2]

  • [1] Université de Toulouse 3 Département de Mathématiques 118, route de Narbonne 31062 Toulouse (France)
  • [2] Université de Caen Département de Mathématiques BP 5186 14032 Caen Cedex (France)

Annales de l’institut Fourier (2010)

  • Volume: 60, Issue: 6, page 2137-2164
  • ISSN: 0373-0956

Abstract

top
The half-liberated orthogonal group O n * appears as intermediate quantum group between the orthogonal group O n , and its free version O n + . We discuss here its basic algebraic properties, and we classify its irreducible representations. The classification of representations is done by using a certain twisting-type relation between O n * and U n , a non abelian discrete group playing the role of weight lattice, and a number of methods inspired from the theory of Lie algebras. We use these results for showing that the dual discrete quantum group has polynomial growth.

How to cite

top

Banica, Teodor, and Vergnioux, Roland. "Invariants of the half-liberated orthogonal group." Annales de l’institut Fourier 60.6 (2010): 2137-2164. <http://eudml.org/doc/116328>.

@article{Banica2010,
abstract = {The half-liberated orthogonal group $O_n^*$ appears as intermediate quantum group between the orthogonal group $O_n$, and its free version $O_n^+$. We discuss here its basic algebraic properties, and we classify its irreducible representations. The classification of representations is done by using a certain twisting-type relation between $O_n^*$ and $U_n$, a non abelian discrete group playing the role of weight lattice, and a number of methods inspired from the theory of Lie algebras. We use these results for showing that the dual discrete quantum group has polynomial growth.},
affiliation = {Université de Toulouse 3 Département de Mathématiques 118, route de Narbonne 31062 Toulouse (France); Université de Caen Département de Mathématiques BP 5186 14032 Caen Cedex (France)},
author = {Banica, Teodor, Vergnioux, Roland},
journal = {Annales de l’institut Fourier},
keywords = {Quantum group; maximal torus; root system; quantum group},
language = {eng},
number = {6},
pages = {2137-2164},
publisher = {Association des Annales de l’institut Fourier},
title = {Invariants of the half-liberated orthogonal group},
url = {http://eudml.org/doc/116328},
volume = {60},
year = {2010},
}

TY - JOUR
AU - Banica, Teodor
AU - Vergnioux, Roland
TI - Invariants of the half-liberated orthogonal group
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 6
SP - 2137
EP - 2164
AB - The half-liberated orthogonal group $O_n^*$ appears as intermediate quantum group between the orthogonal group $O_n$, and its free version $O_n^+$. We discuss here its basic algebraic properties, and we classify its irreducible representations. The classification of representations is done by using a certain twisting-type relation between $O_n^*$ and $U_n$, a non abelian discrete group playing the role of weight lattice, and a number of methods inspired from the theory of Lie algebras. We use these results for showing that the dual discrete quantum group has polynomial growth.
LA - eng
KW - Quantum group; maximal torus; root system; quantum group
UR - http://eudml.org/doc/116328
ER -

References

top
  1. T. Banica, Le groupe quantique compact libre U ( n ) , Comm. Math. Phys. 190 (1997), 143-172 Zbl0906.17009MR1484551
  2. T. Banica, Symmetries of a generic coaction, Math. Ann. 314 (1999), 763-780 Zbl0928.46038MR1709109
  3. T. Banica, J. Bichon, Quantum groups acting on 4 points, J. Reine Angew. Math. 626 (2009), 74-114 Zbl1187.46058MR2492990
  4. T. Banica, J. Bichon, B. Collins, The hyperoctahedral quantum group, J. Ramanujan Math. Soc. 22 (2007), 345-384 Zbl1185.46046MR2376808
  5. T. Banica, B. Collins, Integration over compact quantum groups, Publ. Res. Inst. Math. Sci. 43 (2007), 277-302 Zbl1129.46058MR2341011
  6. T. Banica, R. Speicher, Liberation of orthogonal Lie groups, Adv. Math. 222 (2009), 1461-1501 Zbl1247.46064MR2554941
  7. T. Banica, R. Vergnioux, Fusion rules for quantum reflection groups, J. Noncommut. Geom. 3 (2009), 327-359 Zbl1203.46048MR2511633
  8. T. Banica, R. Vergnioux, Growth estimates for discrete quantum groups, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 12 (2009), 321-340 Zbl1189.46059MR2541400
  9. J. Bhowmick, D. Goswami, A. Skalski, Quantum isometry groups of 0-dimensional manifolds Zbl1213.58004
  10. J. Bichon, A. De Rijdt, S. Vaes, Ergodic coactions with large multiplicity and monoidal equivalence of quantum groups, Comm. Math. Phys. 262 (2006), 703-728 Zbl1122.46046MR2202309
  11. R. Brauer, On algebras which are connected with the semisimple continuous groups, Ann. of Math. 38 (1937), 857-872 Zbl0017.39105MR1503378
  12. B. Collins, P. Śniady, Integration with respect to the Haar measure on the unitary, orthogonal and symplectic group, Comm. Math. Phys. 264 (2006), 773-795 Zbl1108.60004MR2217291
  13. V. G. Drinfeld, Quantum groups, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) (1987), 798-820, Amer. Math. Soc., Providence, RI MR934283
  14. D. Goswami, Quantum group of isometries in classical and noncommutative geometry, Comm. Math. Phys. 285 (2009), 141-160 Zbl1228.81188MR2453592
  15. C. Köstler, R. Speicher, A noncommutative de Finetti theorem: invariance under quantum permutations is equivalent to freeness with amalgamation, Comm. Math. Phys. 291 (2009), 473-490 Zbl1183.81099MR2530168
  16. C. Pinzari, J. Roberts, Ergodic actions of compact quantum groups from solutions of the conjugate equations Zbl1160.46045
  17. S. Vaes, R. Vergnioux, The boundary of universal discrete quantum groups, exactness and factoriality, Duke Math. J. 140 (2007), 35-84 Zbl1129.46062MR2355067
  18. R. Vergnioux, Orientation of quantum Cayley trees and applications, J. Reine Angew. Math. 580 (2005), 101-138 Zbl1079.46048MR2130588
  19. R. Vergnioux, The property of rapid decay for discrete quantum groups, J. Operator Theory 57 (2007), 303-324 Zbl1120.58004MR2329000
  20. S. Wang, Free products of compact quantum groups, Comm. Math. Phys. 167 (1995), 671-692 Zbl0838.46057MR1316765
  21. S. Wang, Quantum symmetry groups of finite spaces, Comm. Math. Phys. 195 (1998), 195-211 Zbl1013.17008MR1637425
  22. H. Wenzl, On the structure of Brauer’s centralizer algebras, Ann. of Math. 128 (1988), 173-193 Zbl0656.20040MR951511
  23. S. L. Woronowicz, Compact matrix pseudogroups, Comm. Math. Phys. 111 (1987), 613-665 Zbl0627.58034MR901157
  24. S. L. Woronowicz, Tannaka-Krein duality for compact matrix pseudogroups. Twisted SU(N) groups, Invent. Math. 93 (1988), 35-76 Zbl0664.58044MR943923
  25. S. L. Woronowicz, Differential calculus on compact matrix pseudogroups (quantum groups), Comm. Math. Phys. 122 (1989), 125-170 Zbl0751.58042MR994499

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.