Invariants of the half-liberated orthogonal group
Teodor Banica[1]; Roland Vergnioux[2]
- [1] Université de Toulouse 3 Département de Mathématiques 118, route de Narbonne 31062 Toulouse (France)
- [2] Université de Caen Département de Mathématiques BP 5186 14032 Caen Cedex (France)
Annales de l’institut Fourier (2010)
- Volume: 60, Issue: 6, page 2137-2164
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBanica, Teodor, and Vergnioux, Roland. "Invariants of the half-liberated orthogonal group." Annales de l’institut Fourier 60.6 (2010): 2137-2164. <http://eudml.org/doc/116328>.
@article{Banica2010,
abstract = {The half-liberated orthogonal group $O_n^*$ appears as intermediate quantum group between the orthogonal group $O_n$, and its free version $O_n^+$. We discuss here its basic algebraic properties, and we classify its irreducible representations. The classification of representations is done by using a certain twisting-type relation between $O_n^*$ and $U_n$, a non abelian discrete group playing the role of weight lattice, and a number of methods inspired from the theory of Lie algebras. We use these results for showing that the dual discrete quantum group has polynomial growth.},
affiliation = {Université de Toulouse 3 Département de Mathématiques 118, route de Narbonne 31062 Toulouse (France); Université de Caen Département de Mathématiques BP 5186 14032 Caen Cedex (France)},
author = {Banica, Teodor, Vergnioux, Roland},
journal = {Annales de l’institut Fourier},
keywords = {Quantum group; maximal torus; root system; quantum group},
language = {eng},
number = {6},
pages = {2137-2164},
publisher = {Association des Annales de l’institut Fourier},
title = {Invariants of the half-liberated orthogonal group},
url = {http://eudml.org/doc/116328},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Banica, Teodor
AU - Vergnioux, Roland
TI - Invariants of the half-liberated orthogonal group
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 6
SP - 2137
EP - 2164
AB - The half-liberated orthogonal group $O_n^*$ appears as intermediate quantum group between the orthogonal group $O_n$, and its free version $O_n^+$. We discuss here its basic algebraic properties, and we classify its irreducible representations. The classification of representations is done by using a certain twisting-type relation between $O_n^*$ and $U_n$, a non abelian discrete group playing the role of weight lattice, and a number of methods inspired from the theory of Lie algebras. We use these results for showing that the dual discrete quantum group has polynomial growth.
LA - eng
KW - Quantum group; maximal torus; root system; quantum group
UR - http://eudml.org/doc/116328
ER -
References
top- T. Banica, Le groupe quantique compact libre , Comm. Math. Phys. 190 (1997), 143-172 Zbl0906.17009MR1484551
- T. Banica, Symmetries of a generic coaction, Math. Ann. 314 (1999), 763-780 Zbl0928.46038MR1709109
- T. Banica, J. Bichon, Quantum groups acting on 4 points, J. Reine Angew. Math. 626 (2009), 74-114 Zbl1187.46058MR2492990
- T. Banica, J. Bichon, B. Collins, The hyperoctahedral quantum group, J. Ramanujan Math. Soc. 22 (2007), 345-384 Zbl1185.46046MR2376808
- T. Banica, B. Collins, Integration over compact quantum groups, Publ. Res. Inst. Math. Sci. 43 (2007), 277-302 Zbl1129.46058MR2341011
- T. Banica, R. Speicher, Liberation of orthogonal Lie groups, Adv. Math. 222 (2009), 1461-1501 Zbl1247.46064MR2554941
- T. Banica, R. Vergnioux, Fusion rules for quantum reflection groups, J. Noncommut. Geom. 3 (2009), 327-359 Zbl1203.46048MR2511633
- T. Banica, R. Vergnioux, Growth estimates for discrete quantum groups, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 12 (2009), 321-340 Zbl1189.46059MR2541400
- J. Bhowmick, D. Goswami, A. Skalski, Quantum isometry groups of 0-dimensional manifolds Zbl1213.58004
- J. Bichon, A. De Rijdt, S. Vaes, Ergodic coactions with large multiplicity and monoidal equivalence of quantum groups, Comm. Math. Phys. 262 (2006), 703-728 Zbl1122.46046MR2202309
- R. Brauer, On algebras which are connected with the semisimple continuous groups, Ann. of Math. 38 (1937), 857-872 Zbl0017.39105MR1503378
- B. Collins, P. Śniady, Integration with respect to the Haar measure on the unitary, orthogonal and symplectic group, Comm. Math. Phys. 264 (2006), 773-795 Zbl1108.60004MR2217291
- V. G. Drinfeld, Quantum groups, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) (1987), 798-820, Amer. Math. Soc., Providence, RI MR934283
- D. Goswami, Quantum group of isometries in classical and noncommutative geometry, Comm. Math. Phys. 285 (2009), 141-160 Zbl1228.81188MR2453592
- C. Köstler, R. Speicher, A noncommutative de Finetti theorem: invariance under quantum permutations is equivalent to freeness with amalgamation, Comm. Math. Phys. 291 (2009), 473-490 Zbl1183.81099MR2530168
- C. Pinzari, J. Roberts, Ergodic actions of compact quantum groups from solutions of the conjugate equations Zbl1160.46045
- S. Vaes, R. Vergnioux, The boundary of universal discrete quantum groups, exactness and factoriality, Duke Math. J. 140 (2007), 35-84 Zbl1129.46062MR2355067
- R. Vergnioux, Orientation of quantum Cayley trees and applications, J. Reine Angew. Math. 580 (2005), 101-138 Zbl1079.46048MR2130588
- R. Vergnioux, The property of rapid decay for discrete quantum groups, J. Operator Theory 57 (2007), 303-324 Zbl1120.58004MR2329000
- S. Wang, Free products of compact quantum groups, Comm. Math. Phys. 167 (1995), 671-692 Zbl0838.46057MR1316765
- S. Wang, Quantum symmetry groups of finite spaces, Comm. Math. Phys. 195 (1998), 195-211 Zbl1013.17008MR1637425
- H. Wenzl, On the structure of Brauer’s centralizer algebras, Ann. of Math. 128 (1988), 173-193 Zbl0656.20040MR951511
- S. L. Woronowicz, Compact matrix pseudogroups, Comm. Math. Phys. 111 (1987), 613-665 Zbl0627.58034MR901157
- S. L. Woronowicz, Tannaka-Krein duality for compact matrix pseudogroups. Twisted SU(N) groups, Invent. Math. 93 (1988), 35-76 Zbl0664.58044MR943923
- S. L. Woronowicz, Differential calculus on compact matrix pseudogroups (quantum groups), Comm. Math. Phys. 122 (1989), 125-170 Zbl0751.58042MR994499
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.