On metacyclic extensions

Masanari Kida[1]

  • [1] University of Electro-Communications 1-5-1 Chofugaoka Chofu Tokyo 182-8585 Japan

Journal de Théorie des Nombres de Bordeaux (2012)

  • Volume: 24, Issue: 2, page 339-353
  • ISSN: 1246-7405

Abstract

top
Galois extensions with various metacyclic Galois groups are constructed by means of a Kummer theory arising from an isogeny of certain algebraic tori. In particular, our method enables us to construct algebraic tori parameterizing metacyclic extensions.

How to cite

top

Kida, Masanari. "On metacyclic extensions." Journal de Théorie des Nombres de Bordeaux 24.2 (2012): 339-353. <http://eudml.org/doc/251056>.

@article{Kida2012,
abstract = {Galois extensions with various metacyclic Galois groups are constructed by means of a Kummer theory arising from an isogeny of certain algebraic tori. In particular, our method enables us to construct algebraic tori parameterizing metacyclic extensions.},
affiliation = {University of Electro-Communications 1-5-1 Chofugaoka Chofu Tokyo 182-8585 Japan},
author = {Kida, Masanari},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
month = {6},
number = {2},
pages = {339-353},
publisher = {Société Arithmétique de Bordeaux},
title = {On metacyclic extensions},
url = {http://eudml.org/doc/251056},
volume = {24},
year = {2012},
}

TY - JOUR
AU - Kida, Masanari
TI - On metacyclic extensions
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2012/6//
PB - Société Arithmétique de Bordeaux
VL - 24
IS - 2
SP - 339
EP - 353
AB - Galois extensions with various metacyclic Galois groups are constructed by means of a Kummer theory arising from an isogeny of certain algebraic tori. In particular, our method enables us to construct algebraic tori parameterizing metacyclic extensions.
LA - eng
UR - http://eudml.org/doc/251056
ER -

References

top
  1. W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The user language. J. Symbolic Comput. 24 (1997), no. 3-4, 235–265. Computational algebra and number theory (London, 1993). Zbl0898.68039MR1484478
  2. H. Cohen, Advanced topics in computational number theory. Springer-Verlag, New York, 2000. Zbl0977.11056MR1728313
  3. C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras. Pure and Applied Mathematics, Vol. XI. Interscience Publishers, a division of John Wiley & Sons, New York-London, 1962. Zbl0131.25601MR144979
  4. M. Hall, Jr., The theory of groups. Chelsea Publishing Co., New York, 1976. Zbl0354.20001MR414669
  5. K. Hashimoto and K. Miyake, Inverse Galois problem for dihedral groups. Number theory and its applications (Kyoto, 1997), Dev. Math., vol. 2, 165–181. Kluwer Acad. Publ., Dordrecht, 1999. Zbl0965.12004MR1738815
  6. M. Imaoka and Y. Kishi, On dihedral extensions and Frobenius extensions. Galois theory and modular forms, Dev. Math., vol. 11, 195–220. Kluwer Acad. Publ., Boston, MA, 2004. Zbl1068.11070MR2059764
  7. C. U. Jensen, A. Ledet, and N. Yui, Generic polynomials. Mathematical Sciences Research Institute Publications, vol. 45. Cambridge University Press, Cambridge, 2002. MR1969648
  8. M. Kida, Galois descent and twists of an abelian variety. Acta Arith. 73 (1995), no. 1, 51–57. Zbl0858.11031MR1358187
  9. —, Cyclic polynomials arising from Kummer theory of norm algebraic tori. Algorithmic number theory, Lecture Notes in Comput. Sci., vol. 4076, 102–113. Springer, Berlin, 2006. Zbl1143.11350MR2282918
  10. —, Descent Kummer theory via Weil restriction of multiplicative groups. J. Number Theory 130 (2010), 639–659. MR2584846
  11. —, A Kummer theoretic construction of an S 3 -polynomial with given quadratic subfield. Interdisciplinary Information Sciences 16 (2010), 17–20. Zbl1262.11094MR2648111
  12. M. Kida, Y. Rikuna, and A. Sato, Classifying Brumer’s quintic polynomials by weak Mordell-Weil groups. Int. J. Number Theory 6 (2010), 691–704. Zbl1285.11134MR2652903
  13. O. Lecacheux, Constructions de polynômes génériques à groupe de Galois résoluble. Acta Arith. 86 (1998), no. 3, 207–216. Zbl0919.12002MR1655979
  14. S. Nakano and M. Sase, A note on the construction of metacyclic extensions. Tokyo J. Math. 25 (2002), no. 1, 197–203. Zbl1019.12002MR1908223
  15. V. E. Voskresenskiĭ, Algebraic groups and their birational invariants. Translations of Mathematical Monographs, vol. 179. American Mathematical Society, Providence, RI, 1998. Zbl0974.14034MR1634406

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.