Gravity, strings, modular and quasimodular forms
P. Marios Petropoulos[1]; Pierre Vanhove[2]
- [1] Centre de Physique Théorique École Polytechnique, CNRS UMR 7644 91128 Palaiseau Cedex France
- [2] IHÉS Le Bois-Marie 91440 Bures-sur-Yvette, France and Institut de Physique Théorique CEA, CNRS URA 2306 91191 Gif-sur-Yvette France
Annales mathématiques Blaise Pascal (2012)
- Volume: 19, Issue: 2, page 379-430
- ISSN: 1259-1734
Access Full Article
topAbstract
topHow to cite
topPetropoulos, P. Marios, and Vanhove, Pierre. "Gravity, strings, modular and quasimodular forms." Annales mathématiques Blaise Pascal 19.2 (2012): 379-430. <http://eudml.org/doc/251060>.
@article{Petropoulos2012,
abstract = {Modular and quasimodular forms have played an important role in gravity and string theory. Eisenstein series have appeared systematically in the determination of spectrums and partition functions, in the description of non-perturbative effects, in higher-order corrections of scalar-field spaces, ...The latter often appear as gravitational instantons i.e. as special solutions of Einstein’s equations. In the present lecture notes we present a class of such solutions in four dimensions, obtained by requiring (conformal) self-duality and Bianchi IX homogeneity. In this case, a vast range of configurations exist, which exhibit interesting modular properties. Examples of other Einstein spaces, without Bianchi IX symmetry, but with similar features are also given. Finally we discuss the emergence and the role of Eisenstein series in the framework of field and string theory perturbative expansions, and motivate the need for unravelling novel modular structures.},
affiliation = {Centre de Physique Théorique École Polytechnique, CNRS UMR 7644 91128 Palaiseau Cedex France; IHÉS Le Bois-Marie 91440 Bures-sur-Yvette, France and Institut de Physique Théorique CEA, CNRS URA 2306 91191 Gif-sur-Yvette France},
author = {Petropoulos, P. Marios, Vanhove, Pierre},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Eisenstein series; gravitational instantons; string moduli spaces},
language = {eng},
month = {7},
number = {2},
pages = {379-430},
publisher = {Annales mathématiques Blaise Pascal},
title = {Gravity, strings, modular and quasimodular forms},
url = {http://eudml.org/doc/251060},
volume = {19},
year = {2012},
}
TY - JOUR
AU - Petropoulos, P. Marios
AU - Vanhove, Pierre
TI - Gravity, strings, modular and quasimodular forms
JO - Annales mathématiques Blaise Pascal
DA - 2012/7//
PB - Annales mathématiques Blaise Pascal
VL - 19
IS - 2
SP - 379
EP - 430
AB - Modular and quasimodular forms have played an important role in gravity and string theory. Eisenstein series have appeared systematically in the determination of spectrums and partition functions, in the description of non-perturbative effects, in higher-order corrections of scalar-field spaces, ...The latter often appear as gravitational instantons i.e. as special solutions of Einstein’s equations. In the present lecture notes we present a class of such solutions in four dimensions, obtained by requiring (conformal) self-duality and Bianchi IX homogeneity. In this case, a vast range of configurations exist, which exhibit interesting modular properties. Examples of other Einstein spaces, without Bianchi IX symmetry, but with similar features are also given. Finally we discuss the emergence and the role of Eisenstein series in the framework of field and string theory perturbative expansions, and motivate the need for unravelling novel modular structures.
LA - eng
KW - Eisenstein series; gravitational instantons; string moduli spaces
UR - http://eudml.org/doc/251060
ER -
References
top- M. J. Ablowitz, S. Chakravarty, R. G. Halburd, Integrable systems and reductions of the self-dual Yang-Mills equations, J. Math. Phys. 44 (2003), 3147-3173 Zbl1062.70050MR2006746
- M. J. Ablowitz, P. A. Clarkson, Solitons, nonlinear evolution equations and inverse scattering, 149 (1991), Cambridge University Press, Cambridge Zbl0762.35001MR1149378
- B. S. Acharya, M. O’Loughlin, Self-duality in -dimensional Euclidean gravity, Phys. Rev. D (3) 55 (1997), R4521-R4524 MR1449598
- Sergei Alexandrov, Twistor Approach to String Compactifications: a Review, (2011)
- Sergei Alexandrov, Daniel Persson, Boris Pioline, On the topology of the hypermultiplet moduli space in type II/CY string vacua, Phys.Rev. D83 (2011) Zbl1301.81176
- Sergei Alexandrov, Boris Pioline, Frank Saueressig, Stefan Vandoren, Linear perturbations of hyperkähler metrics, Lett. Math. Phys. 87 (2009), 225-265 Zbl1169.53035MR2485482
- Sergei Alexandrov, Boris Pioline, Frank Saueressig, Stefan Vandoren, Linear perturbations of quaternionic metrics, Comm. Math. Phys. 296 (2010), 353-403 Zbl1194.53043MR2608119
- Sergei Alexandrov, Boris Pioline, Stefan Vandoren, Self-dual Einstein spaces, heavenly metrics, and twistors, J. Math. Phys. 51 (2010) Zbl1311.53041MR2681102
- Nicola Ambrosetti, Ignatios Antoniadis, Jean-Pierre Derendinger, Pantelis Tziveloglou, The Hypermultiplet with Heisenberg Isometry in N=2 Global and Local Supersymmetry, JHEP 1106 (2011) Zbl1298.81229MR2870800
- Ignatios Antoniadis, Ruben Minasian, Stefan Theisen, Pierre Vanhove, String loop corrections to the universal hypermultiplet, Classical Quantum Gravity 20 (2003), 5079-5102 Zbl1170.83451MR2024800
- M. F. Atiyah, N. J. Hitchin, I. M. Singer, Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser. A 362 (1978), 425-461 Zbl0389.53011MR506229
- M.F. Atiyah, N.J. Hitchin, Low energy scattering of non-Abelian monopoles, Physics Letters A 107 (1985), 21-25 Zbl1177.53069MR778313
- M. V. Babich, D. A. Korotkin, Self-dual -invariant Einstein metrics and modular dependence of theta functions, Lett. Math. Phys. 46 (1998), 323-337 Zbl0917.53016MR1668577
- I. Bakas, E. G. Floratos, A. Kehagias, Octonionic gravitational instantons, Phys. Lett. B 445 (1998), 69-76 MR1672574
- Ling Bao, Axel Kleinschmidt, Bengt E. W. Nilsson, Daniel Persson, Boris Pioline, Instanton corrections to the universal hypermultiplet and automorphic forms on , Commun. Number Theory Phys. 4 (2010), 187-266 Zbl1209.81160MR2679380
- Ling Bao, Axel Kleinschmidt, Bengt E.W. Nilsson, Daniel Persson, Boris Pioline, Rigid Calabi-Yau threefolds, Picard Eisenstein series and instantons, (2010) Zbl1209.81160
- A. A. Belavin, A. M. Polyakov, A. S. Schwartz, Yu. S. Tyupkin, Pseudoparticle solutions of the Yang-Mills equations, Phys. Lett. B 59 (1975), 85-87 MR434183
- V.A. Belinskii, G.W. Gibbons, D.N. Page, C.N. Pope, Asymptotically Euclidean Bianchi IX metrics in quantum gravity, Physics Letters B 76 (1978), 433-435 MR496343
- G. Bossard, P.M. Petropoulos, P. Tripathy, Darboux–Halphen system and the action of Geroch group, (2012)
- F. Bourliot, J. Estes, P. M. Petropoulos, Ph Spindel, -homogeneous gravitational instantons, Classical Quantum Gravity 27 (2010) Zbl1190.83020MR2639106
- F. Bourliot, J. Estes, P. M. Petropoulos, Ph. Spindel, Gravitational instantons, self-duality, and geometric flows, Phys. Rev. D 81 (2010) MR2726952
- D. Brecher, M. J. Perry, Ricci-flat branes, Nuclear Phys. B 566 (2000), 151-172 Zbl0953.83041MR1746217
- D. J. Broadhurst, D. Kreimer, Association of multiple zeta values with positive knots via Feynman diagrams up to loops, Phys. Lett. B 393 (1997), 403-412 Zbl0946.81028MR1435933
- D. J. Broadhurst, D. Kreimer, Feynman diagrams as a weight system: four-loop test of a four-term relation, Phys. Lett. B 426 (1998), 339-346 Zbl1049.81568MR1629951
- Francis Brown, On the decomposition of motivic multiple zeta values, (2011) Zbl1321.11087
- Francis C.S. Brown, On the periods of some Feynman integrals, (2010)
- M. Cahen, R. Debever, L. Defrise, A complex vectorial formalism in general relativity, J. Math. Mech. 16 (1967), 761-785 Zbl0149.23401MR207370
- D. M. J. Calderbank, H. Pedersen, Selfdual spaces with complex structures, Einstein-Weyl geometry and geodesics, Ann. Inst. Fourier (Grenoble) 50 (2000), 921-963 Zbl0970.53027MR1779900
- David M. J. Calderbank, Henrik Pedersen, Selfdual Einstein metrics with torus symmetry, J. Differential Geom. 60 (2002), 485-521 Zbl1067.53034MR1950174
- J. Chazy, Sur les équations différentielles dont l’intégrale générale possède une coupure essentielle mobile., C.R. Acad. Sc. Paris 150 (1910), 456-458 Zbl41.0359.02
- J. Chazy, Sur les équations différentielles du troisième ordre et d’ordre supérieur dont líntégrale générale a ses points critiques fixes., Acta Math. 34 (1911), 317-385 Zbl42.0340.03MR1555070
- Bennett Chow, Dan Knopf, The Ricci flow: an introduction, 110 (2004), American Mathematical Society, Providence, RI Zbl1086.53085MR2061425
- S. Coleman, Aspects of Symmetry, (1985), Cambridge University Press Zbl0575.22023
- M. Cvetič, G. W. Gibbons, H. Lü, C. N. Pope, Cohomogeneity one manifolds of Spin(7) and holonomy, Phys. Rev. D (3) 65 (2002) Zbl1031.53076MR1919035
- Mirjam Cvetic, G.W. Gibbons, H. Lu, C.N. Pope, Bianchi IX selfdual Einstein metrics and singular G(2) manifolds, Class.Quant.Grav. 20 (2003), 4239-4268 Zbl1048.53033MR2013229
- Gaston Darboux, Mémoire sur la théorie des coordonnées curvilignes, et des systèmes orthogonaux, Ann. Sci. École Norm. Sup. (2) 7 (1878), 101-150, 227–260, 275–348
- P. Deligne, Multizêtas [d’après Francis Brown], (Janvier 2012)
- Eric D’Hoker, D. H. Phong, The box graph in superstring theory, Nuclear Phys. B 440 (1995), 24-94 Zbl0990.81655MR1336085
- Tohru Eguchi, Peter B. Gilkey, Andrew J. Hanson, Gravitation, gauge theories and differential geometry, Phys. Rep. 66 (1980), 213-393 MR598586
- Tohru Eguchi, Andrew J. Hanson, Gravitational instantons, Gen. Relativity Gravitation 11 (1979), 315-320 MR563971
- Tohru Eguchi, Andrew J. Hanson, Selfdual Solutions to Euclidean Gravity, Annals Phys. 120 (1979), 82-106 Zbl0409.53020MR540896
- S. Ferrara, S. Sabharwal, Quaternionic Manifolds for Type II Superstring Vacua of Calabi-Yau Spaces, Nucl.Phys. B332 (1990) MR1046353
- E. G. Floratos, A. Kehagias, Eight-dimensional self-dual spaces, Phys. Lett. B 427 (1998), 283-290 MR1629156
- Daniel Harry Friedan, Nonlinear Models in Two + Epsilon Dimensions, Annals Phys. 163 (1985) Zbl0583.58010MR811072
- Herbert Gangl, Masanobu Kaneko, Don Zagier, Double zeta values and modular forms, Automorphic forms and zeta functions (2006), 71-106, World Sci. Publ., Hackensack, NJ Zbl1122.11057MR2208210
- Robert Geroch, A method for generating solutions of Einstein’s equations, J. Mathematical Phys. 12 (1971), 918-924 Zbl0214.49002MR286442
- G. W. Gibbons, S. W. Hawking, Classification of gravitational instanton symmetries, Comm. Math. Phys. 66 (1979), 291-310 MR535152
- G. W. Gibbons, N. S. Manton, Classical and quantum dynamics of BPS monopoles, Nuclear Phys. B 274 (1986), 183-224 MR850983
- G. W. Gibbons, C. N. Pope, as a gravitational instanton, Comm. Math. Phys. 61 (1978), 239-248 Zbl0389.53013MR503465
- G. W. Gibbons, C. N. Pope, The positive action conjecture and asymptotically Euclidean metrics in quantum gravity, Comm. Math. Phys. 66 (1979), 267-290 MR535151
- G.W. Gibbons, S.W. Hawking, Gravitational multi-instantons, Physics Letters B 78 (1978), 430-432
- A.S. Goncharov, Hodge correlators, (2010) Zbl1217.14007
- Michael B. Green, Stephen D. Miller, Jorge G. Russo, Pierre Vanhove, Eisenstein series for higher-rank groups and string theory amplitudes, Commun.Num.Theor.Phys. 4 (2010), 551-596 Zbl1218.83034MR2771579
- Michael B. Green, Jorge G. Russo, Pierre Vanhove, Low energy expansion of the four-particle genus-one amplitude in type II superstring theory, J. High Energy Phys. (2008) MR2386025
- Michael B. Green, John H. Schwarz, Edward Witten, Superstring theory. Vol. 1, (1987), Cambridge University Press, Cambridge Zbl0619.53002MR878143
- Michael B. Green, John H. Schwarz, Edward Witten, Superstring theory. Vol. 2., (1987), Cambridge University Press, Cambridge Zbl0619.53002MR878144
- Michael B. Green, Pierre Vanhove, The Low-energy expansion of the one loop type II superstring amplitude, Phys.Rev. D61 (2000) MR1790762
- G. H. Halphen, Sur certains systéme d’équations différetielles, C. R. Acad. Sci Paris 92 (1881), 1404-1407
- G. H. Halphen, Sur une systéme d’équations différetielles, C. R. Acad. Sci Paris 92 (1881), 1101-1103
- Richard S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982), 255-306 Zbl0504.53034MR664497
- N. J. Hitchin, Twistor spaces, Einstein metrics and isomonodromic deformations, J. Differential Geom. 42 (1995), 30-112 Zbl0861.53049MR1350695
- G. ’t Hooft, Symmetry Breaking through Bell-Jackiw Anomalies, Phys. Rev. Lett. 37 (1976), 8-11
- James Isenberg, Martin Jackson, Ricci flow of locally homogeneous geometries on closed manifolds, J. Differential Geom. 35 (1992), 723-741 Zbl0808.53044MR1163457
- Evgeny Ivanov, Galliano Valent, Harmonic space construction of the quaternionic Taub-NUT metric, Classical Quantum Gravity 16 (1999), 1039-1056 Zbl0937.83032MR1682553
- John David Jackson, Classical electrodynamics, (1975), John Wiley & Sons Inc., New York Zbl0114.42903MR436782
- Michio Jimbo, Tetsuji Miwa, Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II, Phys. D 2 (1981), 407-448 Zbl1194.34166MR625446
- Edward Kasner, Geometrical Theorems on Einstein’s Cosmological Equations, Amer. J. Math. 43 (1921), 217-221 Zbl48.1040.02MR1506447
- Neal Koblitz, Introduction to elliptic curves and modular forms, 97 (1993), Springer-Verlag, New York Zbl0804.11039MR1216136
- H. A. Kramers, G. H. Wannier, Statistics of the two-dimensional ferromagnet. I, Phys. Rev. (2) 60 (1941), 252-262 Zbl0027.28505MR4803
- Robert P. Langlands, On the functional equations satisfied by Eisenstein series, (1976), Springer-Verlag, Berlin Zbl0332.10018MR579181
- C. R. LeBrun, -space with a cosmological constant, Proc. Roy. Soc. London Ser. A 380 (1982), 171-185 Zbl0549.53042MR652038
- D. Lorenz, Gravitational instanton solutions for Bianchi types I–IX, Acta Phys.Polon. B14 (1983), 791-805 MR741717
- Dieter Lorenz-Petzold, Gravitational instanton solutions, Progr. Theoret. Phys. 81 (1989), 17-22 MR989967
- Andrzej J. Maciejewski, Jean-Marie Strelcyn, On the algebraic non-integrability of the Halphen system, Phys. Lett. A 201 (1995), 161-166 Zbl1020.34502MR1329966
- N. S. Manton, A remark on the scattering of BPS monopoles, Phys. Lett. B 110 (1982), 54-56 Zbl1190.81087MR647883
- R. Maszczyk, L. J. Mason, N. M. J. Woodhouse, Self-dual Bianchi metrics and the Painlevé transcendents, Classical Quantum Gravity 11 (1994), 65-71 Zbl0790.53032MR1259124
- John Milnor, Curvatures of left invariant metrics on Lie groups, Advances in Math. 21 (1976), 293-329 Zbl0341.53030MR425012
- C. Mœglin, J.-L. Waldspurger, Spectral decomposition and Eisenstein series, 113 (1995), Cambridge University Press, Cambridge Zbl0846.11032MR1361168
- C. Montonen, D. Olive, Magnetic monopoles as gauge particles?, Physics Letters B 72 (1977), 117-120
- E. Newman, L. Tamburino, T. Unti, Empty-space generalization of the Schwarzschild metric, J. Mathematical Phys. 4 (1963), 915-923 Zbl0115.43305MR152345
- Lars Onsager, Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Transition, Phys. Rev. 65 (1944), 117-149 Zbl0060.46001MR10315
- A.R. Osborne, T.L. Burch, Internal Solitons in the Andaman Sea, Science 208 (1980), 451-460
- H. Pedersen, Eguchi-Hanson metrics with cosmological constant, Classical Quantum Gravity 2 (1985), 579-587 Zbl0575.53006MR795103
- H. Pedersen, Einstein metrics, spinning top motions and monopoles, Math. Ann. 274 (1986), 35-59 Zbl0566.53058MR834105
- Henrik Pedersen, Yat Sun Poon, Hyper-Kähler metrics and a generalization of the Bogomolny equations, Comm. Math. Phys. 117 (1988), 569-580 Zbl0648.53028MR953820
- Henrik Pedersen, Yat Sun Poon, Kähler surfaces with zero scalar curvature, Classical Quantum Gravity 7 (1990), 1707-1719 Zbl0711.53039MR1075860
- Grisha Perelman, The Entropy formula for the Ricci flow and its geometric applications, (2002) Zbl1130.53001
- Grisha Perelman, Finite extinction time for the solutions to the Ricci flow on certain three-manifolds, (2003) Zbl1130.53003
- Grisha Perelman, Ricci flow with surgery on three-manifolds, (2003) Zbl1130.53002
- P.M. Petropoulos, V. Pozzoli, K. Siampos, Self-dual gravitational instantons and geometric flows of all Bianchi types, (2011) Zbl1232.83078MR2865308
- Michael P. Ryan, Lawrence C. Shepley, Homogeneous relativistic cosmologies, (1975), Princeton University Press, Princeton, N.J. MR524082
- O. Schlotterer, S. Stieberger, Motivic Multiple Zeta Values and Superstring Amplitudes, (2012) Zbl1280.81112
- Peter Scott, The geometries of -manifolds, Bull. London Math. Soc. 15 (1983), 401-487 Zbl0561.57001MR705527
- N. Seiberg, E. Witten, Electric-magnetic duality, monopole condensation, and confinement in supersymmetric Yang-Mills theory, Nuclear Physics B 426 (1994), 19-52 Zbl0996.81510MR1293681
- N. Seiberg, E. Witten, Erratum, Nuclear Physics B 430 (1994), 485-486 Zbl0996.81511MR1303306
- Jean-Pierre Serre, Cours d’arithmétique, (1977), Presses Universitaires de France, Paris Zbl0376.12001MR498338
- K. Sfetsos, T-duality and RG-flows, (18-22 September 2006)
- Philippe Spindel, Gravity before supergravity, Supersymmetry (Bonn, 1984) 125 (1985), 455-533, Plenum, New York MR820496
- L. A. Takhtajan, A simple example of modular forms as tau-functions for integrable equations, Teoret. Mat. Fiz. 93 (1992), 330-341 Zbl0794.35114MR1233549
- Audrey Terras, Harmonic analysis on symmetric spaces and applications. I, (1985), Springer-Verlag, New York Zbl0574.10029MR791406
- W. Thurston, The Geometry and Topology of Three-Manifolds, (1978 – 1981)
- K. P. Tod, A comment on: “Kähler surfaces with zero scalar curvature” [Classical Quantum Gravity 7 (1990), no. 10, 1707–1719; MR1075860 (91i:53057)] by H. Pedersen and Y. S. Poon, Classical Quantum Gravity 8 (1991), 1049-1051 Zbl0726.53031MR1104774
- K. P. Tod, Self-dual Einstein metrics from the Painlevé VI equation, Phys. Lett. A 190 (1994), 221-224 Zbl0960.83505MR1285788
- R. S. Ward, Self-dual space-times with cosmological constant, Comm. Math. Phys. 78 (1980/81), 1-17 Zbl0468.53019MR597028
- R. S. Ward, Integrable and solvable systems, and relations among them, Philos. Trans. Roy. Soc. London Ser. A 315 (1985), 451-457 Zbl0579.35078MR836745
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.