Gravity, strings, modular and quasimodular forms

P. Marios Petropoulos[1]; Pierre Vanhove[2]

  • [1] Centre de Physique Théorique École Polytechnique, CNRS UMR 7644 91128 Palaiseau Cedex France
  • [2] IHÉS Le Bois-Marie 91440 Bures-sur-Yvette, France and Institut de Physique Théorique CEA, CNRS URA 2306 91191 Gif-sur-Yvette France

Annales mathématiques Blaise Pascal (2012)

  • Volume: 19, Issue: 2, page 379-430
  • ISSN: 1259-1734

Abstract

top
Modular and quasimodular forms have played an important role in gravity and string theory. Eisenstein series have appeared systematically in the determination of spectrums and partition functions, in the description of non-perturbative effects, in higher-order corrections of scalar-field spaces, ...The latter often appear as gravitational instantons i.e. as special solutions of Einstein’s equations. In the present lecture notes we present a class of such solutions in four dimensions, obtained by requiring (conformal) self-duality and Bianchi IX homogeneity. In this case, a vast range of configurations exist, which exhibit interesting modular properties. Examples of other Einstein spaces, without Bianchi IX symmetry, but with similar features are also given. Finally we discuss the emergence and the role of Eisenstein series in the framework of field and string theory perturbative expansions, and motivate the need for unravelling novel modular structures.

How to cite

top

Petropoulos, P. Marios, and Vanhove, Pierre. "Gravity, strings, modular and quasimodular forms." Annales mathématiques Blaise Pascal 19.2 (2012): 379-430. <http://eudml.org/doc/251060>.

@article{Petropoulos2012,
abstract = {Modular and quasimodular forms have played an important role in gravity and string theory. Eisenstein series have appeared systematically in the determination of spectrums and partition functions, in the description of non-perturbative effects, in higher-order corrections of scalar-field spaces, ...The latter often appear as gravitational instantons i.e. as special solutions of Einstein’s equations. In the present lecture notes we present a class of such solutions in four dimensions, obtained by requiring (conformal) self-duality and Bianchi IX homogeneity. In this case, a vast range of configurations exist, which exhibit interesting modular properties. Examples of other Einstein spaces, without Bianchi IX symmetry, but with similar features are also given. Finally we discuss the emergence and the role of Eisenstein series in the framework of field and string theory perturbative expansions, and motivate the need for unravelling novel modular structures.},
affiliation = {Centre de Physique Théorique École Polytechnique, CNRS UMR 7644 91128 Palaiseau Cedex France; IHÉS Le Bois-Marie 91440 Bures-sur-Yvette, France and Institut de Physique Théorique CEA, CNRS URA 2306 91191 Gif-sur-Yvette France},
author = {Petropoulos, P. Marios, Vanhove, Pierre},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Eisenstein series; gravitational instantons; string moduli spaces},
language = {eng},
month = {7},
number = {2},
pages = {379-430},
publisher = {Annales mathématiques Blaise Pascal},
title = {Gravity, strings, modular and quasimodular forms},
url = {http://eudml.org/doc/251060},
volume = {19},
year = {2012},
}

TY - JOUR
AU - Petropoulos, P. Marios
AU - Vanhove, Pierre
TI - Gravity, strings, modular and quasimodular forms
JO - Annales mathématiques Blaise Pascal
DA - 2012/7//
PB - Annales mathématiques Blaise Pascal
VL - 19
IS - 2
SP - 379
EP - 430
AB - Modular and quasimodular forms have played an important role in gravity and string theory. Eisenstein series have appeared systematically in the determination of spectrums and partition functions, in the description of non-perturbative effects, in higher-order corrections of scalar-field spaces, ...The latter often appear as gravitational instantons i.e. as special solutions of Einstein’s equations. In the present lecture notes we present a class of such solutions in four dimensions, obtained by requiring (conformal) self-duality and Bianchi IX homogeneity. In this case, a vast range of configurations exist, which exhibit interesting modular properties. Examples of other Einstein spaces, without Bianchi IX symmetry, but with similar features are also given. Finally we discuss the emergence and the role of Eisenstein series in the framework of field and string theory perturbative expansions, and motivate the need for unravelling novel modular structures.
LA - eng
KW - Eisenstein series; gravitational instantons; string moduli spaces
UR - http://eudml.org/doc/251060
ER -

References

top
  1. M. J. Ablowitz, S. Chakravarty, R. G. Halburd, Integrable systems and reductions of the self-dual Yang-Mills equations, J. Math. Phys. 44 (2003), 3147-3173 Zbl1062.70050MR2006746
  2. M. J. Ablowitz, P. A. Clarkson, Solitons, nonlinear evolution equations and inverse scattering, 149 (1991), Cambridge University Press, Cambridge Zbl0762.35001MR1149378
  3. B. S. Acharya, M. O’Loughlin, Self-duality in ( D 8 ) -dimensional Euclidean gravity, Phys. Rev. D (3) 55 (1997), R4521-R4524 MR1449598
  4. Sergei Alexandrov, Twistor Approach to String Compactifications: a Review, (2011) 
  5. Sergei Alexandrov, Daniel Persson, Boris Pioline, On the topology of the hypermultiplet moduli space in type II/CY string vacua, Phys.Rev. D83 (2011) Zbl1301.81176
  6. Sergei Alexandrov, Boris Pioline, Frank Saueressig, Stefan Vandoren, Linear perturbations of hyperkähler metrics, Lett. Math. Phys. 87 (2009), 225-265 Zbl1169.53035MR2485482
  7. Sergei Alexandrov, Boris Pioline, Frank Saueressig, Stefan Vandoren, Linear perturbations of quaternionic metrics, Comm. Math. Phys. 296 (2010), 353-403 Zbl1194.53043MR2608119
  8. Sergei Alexandrov, Boris Pioline, Stefan Vandoren, Self-dual Einstein spaces, heavenly metrics, and twistors, J. Math. Phys. 51 (2010) Zbl1311.53041MR2681102
  9. Nicola Ambrosetti, Ignatios Antoniadis, Jean-Pierre Derendinger, Pantelis Tziveloglou, The Hypermultiplet with Heisenberg Isometry in N=2 Global and Local Supersymmetry, JHEP 1106 (2011) Zbl1298.81229MR2870800
  10. Ignatios Antoniadis, Ruben Minasian, Stefan Theisen, Pierre Vanhove, String loop corrections to the universal hypermultiplet, Classical Quantum Gravity 20 (2003), 5079-5102 Zbl1170.83451MR2024800
  11. M. F. Atiyah, N. J. Hitchin, I. M. Singer, Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser. A 362 (1978), 425-461 Zbl0389.53011MR506229
  12. M.F. Atiyah, N.J. Hitchin, Low energy scattering of non-Abelian monopoles, Physics Letters A 107 (1985), 21-25 Zbl1177.53069MR778313
  13. M. V. Babich, D. A. Korotkin, Self-dual SU ( 2 ) -invariant Einstein metrics and modular dependence of theta functions, Lett. Math. Phys. 46 (1998), 323-337 Zbl0917.53016MR1668577
  14. I. Bakas, E. G. Floratos, A. Kehagias, Octonionic gravitational instantons, Phys. Lett. B 445 (1998), 69-76 MR1672574
  15. Ling Bao, Axel Kleinschmidt, Bengt E. W. Nilsson, Daniel Persson, Boris Pioline, Instanton corrections to the universal hypermultiplet and automorphic forms on SU ( 2 , 1 ) , Commun. Number Theory Phys. 4 (2010), 187-266 Zbl1209.81160MR2679380
  16. Ling Bao, Axel Kleinschmidt, Bengt E.W. Nilsson, Daniel Persson, Boris Pioline, Rigid Calabi-Yau threefolds, Picard Eisenstein series and instantons, (2010) Zbl1209.81160
  17. A. A. Belavin, A. M. Polyakov, A. S. Schwartz, Yu. S. Tyupkin, Pseudoparticle solutions of the Yang-Mills equations, Phys. Lett. B 59 (1975), 85-87 MR434183
  18. V.A. Belinskii, G.W. Gibbons, D.N. Page, C.N. Pope, Asymptotically Euclidean Bianchi IX metrics in quantum gravity, Physics Letters B 76 (1978), 433-435 MR496343
  19. G. Bossard, P.M. Petropoulos, P. Tripathy, Darboux–Halphen system and the action of Geroch group, (2012) 
  20. F. Bourliot, J. Estes, P. M. Petropoulos, Ph Spindel, G 3 -homogeneous gravitational instantons, Classical Quantum Gravity 27 (2010) Zbl1190.83020MR2639106
  21. F. Bourliot, J. Estes, P. M. Petropoulos, Ph. Spindel, Gravitational instantons, self-duality, and geometric flows, Phys. Rev. D 81 (2010) MR2726952
  22. D. Brecher, M. J. Perry, Ricci-flat branes, Nuclear Phys. B 566 (2000), 151-172 Zbl0953.83041MR1746217
  23. D. J. Broadhurst, D. Kreimer, Association of multiple zeta values with positive knots via Feynman diagrams up to 9 loops, Phys. Lett. B 393 (1997), 403-412 Zbl0946.81028MR1435933
  24. D. J. Broadhurst, D. Kreimer, Feynman diagrams as a weight system: four-loop test of a four-term relation, Phys. Lett. B 426 (1998), 339-346 Zbl1049.81568MR1629951
  25. Francis Brown, On the decomposition of motivic multiple zeta values, (2011) Zbl1321.11087
  26. Francis C.S. Brown, On the periods of some Feynman integrals, (2010) 
  27. M. Cahen, R. Debever, L. Defrise, A complex vectorial formalism in general relativity, J. Math. Mech. 16 (1967), 761-785 Zbl0149.23401MR207370
  28. D. M. J. Calderbank, H. Pedersen, Selfdual spaces with complex structures, Einstein-Weyl geometry and geodesics, Ann. Inst. Fourier (Grenoble) 50 (2000), 921-963 Zbl0970.53027MR1779900
  29. David M. J. Calderbank, Henrik Pedersen, Selfdual Einstein metrics with torus symmetry, J. Differential Geom. 60 (2002), 485-521 Zbl1067.53034MR1950174
  30. J. Chazy, Sur les équations différentielles dont l’intégrale générale possède une coupure essentielle mobile., C.R. Acad. Sc. Paris 150 (1910), 456-458 Zbl41.0359.02
  31. J. Chazy, Sur les équations différentielles du troisième ordre et d’ordre supérieur dont líntégrale générale a ses points critiques fixes., Acta Math. 34 (1911), 317-385 Zbl42.0340.03MR1555070
  32. Bennett Chow, Dan Knopf, The Ricci flow: an introduction, 110 (2004), American Mathematical Society, Providence, RI Zbl1086.53085MR2061425
  33. S. Coleman, Aspects of Symmetry, (1985), Cambridge University Press Zbl0575.22023
  34. M. Cvetič, G. W. Gibbons, H. Lü, C. N. Pope, Cohomogeneity one manifolds of Spin(7) and G 2 holonomy, Phys. Rev. D (3) 65 (2002) Zbl1031.53076MR1919035
  35. Mirjam Cvetic, G.W. Gibbons, H. Lu, C.N. Pope, Bianchi IX selfdual Einstein metrics and singular G(2) manifolds, Class.Quant.Grav. 20 (2003), 4239-4268 Zbl1048.53033MR2013229
  36. Gaston Darboux, Mémoire sur la théorie des coordonnées curvilignes, et des systèmes orthogonaux, Ann. Sci. École Norm. Sup. (2) 7 (1878), 101-150, 227–260, 275–348 
  37. P. Deligne, Multizêtas [d’après Francis Brown], (Janvier 2012) 
  38. Eric D’Hoker, D. H. Phong, The box graph in superstring theory, Nuclear Phys. B 440 (1995), 24-94 Zbl0990.81655MR1336085
  39. Tohru Eguchi, Peter B. Gilkey, Andrew J. Hanson, Gravitation, gauge theories and differential geometry, Phys. Rep. 66 (1980), 213-393 MR598586
  40. Tohru Eguchi, Andrew J. Hanson, Gravitational instantons, Gen. Relativity Gravitation 11 (1979), 315-320 MR563971
  41. Tohru Eguchi, Andrew J. Hanson, Selfdual Solutions to Euclidean Gravity, Annals Phys. 120 (1979), 82-106 Zbl0409.53020MR540896
  42. S. Ferrara, S. Sabharwal, Quaternionic Manifolds for Type II Superstring Vacua of Calabi-Yau Spaces, Nucl.Phys. B332 (1990) MR1046353
  43. E. G. Floratos, A. Kehagias, Eight-dimensional self-dual spaces, Phys. Lett. B 427 (1998), 283-290 MR1629156
  44. Daniel Harry Friedan, Nonlinear Models in Two + Epsilon Dimensions, Annals Phys. 163 (1985) Zbl0583.58010MR811072
  45. Herbert Gangl, Masanobu Kaneko, Don Zagier, Double zeta values and modular forms, Automorphic forms and zeta functions (2006), 71-106, World Sci. Publ., Hackensack, NJ Zbl1122.11057MR2208210
  46. Robert Geroch, A method for generating solutions of Einstein’s equations, J. Mathematical Phys. 12 (1971), 918-924 Zbl0214.49002MR286442
  47. G. W. Gibbons, S. W. Hawking, Classification of gravitational instanton symmetries, Comm. Math. Phys. 66 (1979), 291-310 MR535152
  48. G. W. Gibbons, N. S. Manton, Classical and quantum dynamics of BPS monopoles, Nuclear Phys. B 274 (1986), 183-224 MR850983
  49. G. W. Gibbons, C. N. Pope, C P 2 as a gravitational instanton, Comm. Math. Phys. 61 (1978), 239-248 Zbl0389.53013MR503465
  50. G. W. Gibbons, C. N. Pope, The positive action conjecture and asymptotically Euclidean metrics in quantum gravity, Comm. Math. Phys. 66 (1979), 267-290 MR535151
  51. G.W. Gibbons, S.W. Hawking, Gravitational multi-instantons, Physics Letters B 78 (1978), 430-432 
  52. A.S. Goncharov, Hodge correlators, (2010) Zbl1217.14007
  53. Michael B. Green, Stephen D. Miller, Jorge G. Russo, Pierre Vanhove, Eisenstein series for higher-rank groups and string theory amplitudes, Commun.Num.Theor.Phys. 4 (2010), 551-596 Zbl1218.83034MR2771579
  54. Michael B. Green, Jorge G. Russo, Pierre Vanhove, Low energy expansion of the four-particle genus-one amplitude in type II superstring theory, J. High Energy Phys. (2008) MR2386025
  55. Michael B. Green, John H. Schwarz, Edward Witten, Superstring theory. Vol. 1, (1987), Cambridge University Press, Cambridge Zbl0619.53002MR878143
  56. Michael B. Green, John H. Schwarz, Edward Witten, Superstring theory. Vol. 2., (1987), Cambridge University Press, Cambridge Zbl0619.53002MR878144
  57. Michael B. Green, Pierre Vanhove, The Low-energy expansion of the one loop type II superstring amplitude, Phys.Rev. D61 (2000) MR1790762
  58. G. H. Halphen, Sur certains systéme d’équations différetielles, C. R. Acad. Sci Paris 92 (1881), 1404-1407 
  59. G. H. Halphen, Sur une systéme d’équations différetielles, C. R. Acad. Sci Paris 92 (1881), 1101-1103 
  60. Richard S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982), 255-306 Zbl0504.53034MR664497
  61. N. J. Hitchin, Twistor spaces, Einstein metrics and isomonodromic deformations, J. Differential Geom. 42 (1995), 30-112 Zbl0861.53049MR1350695
  62. G. ’t Hooft, Symmetry Breaking through Bell-Jackiw Anomalies, Phys. Rev. Lett. 37 (1976), 8-11 
  63. James Isenberg, Martin Jackson, Ricci flow of locally homogeneous geometries on closed manifolds, J. Differential Geom. 35 (1992), 723-741 Zbl0808.53044MR1163457
  64. Evgeny Ivanov, Galliano Valent, Harmonic space construction of the quaternionic Taub-NUT metric, Classical Quantum Gravity 16 (1999), 1039-1056 Zbl0937.83032MR1682553
  65. John David Jackson, Classical electrodynamics, (1975), John Wiley & Sons Inc., New York Zbl0114.42903MR436782
  66. Michio Jimbo, Tetsuji Miwa, Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II, Phys. D 2 (1981), 407-448 Zbl1194.34166MR625446
  67. Edward Kasner, Geometrical Theorems on Einstein’s Cosmological Equations, Amer. J. Math. 43 (1921), 217-221 Zbl48.1040.02MR1506447
  68. Neal Koblitz, Introduction to elliptic curves and modular forms, 97 (1993), Springer-Verlag, New York Zbl0804.11039MR1216136
  69. H. A. Kramers, G. H. Wannier, Statistics of the two-dimensional ferromagnet. I, Phys. Rev. (2) 60 (1941), 252-262 Zbl0027.28505MR4803
  70. Robert P. Langlands, On the functional equations satisfied by Eisenstein series, (1976), Springer-Verlag, Berlin Zbl0332.10018MR579181
  71. C. R. LeBrun, -space with a cosmological constant, Proc. Roy. Soc. London Ser. A 380 (1982), 171-185 Zbl0549.53042MR652038
  72. D. Lorenz, Gravitational instanton solutions for Bianchi types I–IX, Acta Phys.Polon. B14 (1983), 791-805 MR741717
  73. Dieter Lorenz-Petzold, Gravitational instanton solutions, Progr. Theoret. Phys. 81 (1989), 17-22 MR989967
  74. Andrzej J. Maciejewski, Jean-Marie Strelcyn, On the algebraic non-integrability of the Halphen system, Phys. Lett. A 201 (1995), 161-166 Zbl1020.34502MR1329966
  75. N. S. Manton, A remark on the scattering of BPS monopoles, Phys. Lett. B 110 (1982), 54-56 Zbl1190.81087MR647883
  76. R. Maszczyk, L. J. Mason, N. M. J. Woodhouse, Self-dual Bianchi metrics and the Painlevé transcendents, Classical Quantum Gravity 11 (1994), 65-71 Zbl0790.53032MR1259124
  77. John Milnor, Curvatures of left invariant metrics on Lie groups, Advances in Math. 21 (1976), 293-329 Zbl0341.53030MR425012
  78. C. Mœglin, J.-L. Waldspurger, Spectral decomposition and Eisenstein series, 113 (1995), Cambridge University Press, Cambridge Zbl0846.11032MR1361168
  79. C. Montonen, D. Olive, Magnetic monopoles as gauge particles?, Physics Letters B 72 (1977), 117-120 
  80. E. Newman, L. Tamburino, T. Unti, Empty-space generalization of the Schwarzschild metric, J. Mathematical Phys. 4 (1963), 915-923 Zbl0115.43305MR152345
  81. Lars Onsager, Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Transition, Phys. Rev. 65 (1944), 117-149 Zbl0060.46001MR10315
  82. A.R. Osborne, T.L. Burch, Internal Solitons in the Andaman Sea, Science 208 (1980), 451-460 
  83. H. Pedersen, Eguchi-Hanson metrics with cosmological constant, Classical Quantum Gravity 2 (1985), 579-587 Zbl0575.53006MR795103
  84. H. Pedersen, Einstein metrics, spinning top motions and monopoles, Math. Ann. 274 (1986), 35-59 Zbl0566.53058MR834105
  85. Henrik Pedersen, Yat Sun Poon, Hyper-Kähler metrics and a generalization of the Bogomolny equations, Comm. Math. Phys. 117 (1988), 569-580 Zbl0648.53028MR953820
  86. Henrik Pedersen, Yat Sun Poon, Kähler surfaces with zero scalar curvature, Classical Quantum Gravity 7 (1990), 1707-1719 Zbl0711.53039MR1075860
  87. Grisha Perelman, The Entropy formula for the Ricci flow and its geometric applications, (2002) Zbl1130.53001
  88. Grisha Perelman, Finite extinction time for the solutions to the Ricci flow on certain three-manifolds, (2003) Zbl1130.53003
  89. Grisha Perelman, Ricci flow with surgery on three-manifolds, (2003) Zbl1130.53002
  90. P.M. Petropoulos, V. Pozzoli, K. Siampos, Self-dual gravitational instantons and geometric flows of all Bianchi types, (2011) Zbl1232.83078MR2865308
  91. Michael P. Ryan, Lawrence C. Shepley, Homogeneous relativistic cosmologies, (1975), Princeton University Press, Princeton, N.J. MR524082
  92. O. Schlotterer, S. Stieberger, Motivic Multiple Zeta Values and Superstring Amplitudes, (2012) Zbl1280.81112
  93. Peter Scott, The geometries of 3 -manifolds, Bull. London Math. Soc. 15 (1983), 401-487 Zbl0561.57001MR705527
  94. N. Seiberg, E. Witten, Electric-magnetic duality, monopole condensation, and confinement in N = 2 supersymmetric Yang-Mills theory, Nuclear Physics B 426 (1994), 19-52 Zbl0996.81510MR1293681
  95. N. Seiberg, E. Witten, Erratum, Nuclear Physics B 430 (1994), 485-486 Zbl0996.81511MR1303306
  96. Jean-Pierre Serre, Cours d’arithmétique, (1977), Presses Universitaires de France, Paris Zbl0376.12001MR498338
  97. K. Sfetsos, T-duality and RG-flows, (18-22 September 2006) 
  98. Philippe Spindel, Gravity before supergravity, Supersymmetry (Bonn, 1984) 125 (1985), 455-533, Plenum, New York MR820496
  99. L. A. Takhtajan, A simple example of modular forms as tau-functions for integrable equations, Teoret. Mat. Fiz. 93 (1992), 330-341 Zbl0794.35114MR1233549
  100. Audrey Terras, Harmonic analysis on symmetric spaces and applications. I, (1985), Springer-Verlag, New York Zbl0574.10029MR791406
  101. W. Thurston, The Geometry and Topology of Three-Manifolds, (1978 – 1981) 
  102. K. P. Tod, A comment on: “Kähler surfaces with zero scalar curvature” [Classical Quantum Gravity 7 (1990), no. 10, 1707–1719; MR1075860 (91i:53057)] by H. Pedersen and Y. S. Poon, Classical Quantum Gravity 8 (1991), 1049-1051 Zbl0726.53031MR1104774
  103. K. P. Tod, Self-dual Einstein metrics from the Painlevé VI equation, Phys. Lett. A 190 (1994), 221-224 Zbl0960.83505MR1285788
  104. R. S. Ward, Self-dual space-times with cosmological constant, Comm. Math. Phys. 78 (1980/81), 1-17 Zbl0468.53019MR597028
  105. R. S. Ward, Integrable and solvable systems, and relations among them, Philos. Trans. Roy. Soc. London Ser. A 315 (1985), 451-457 Zbl0579.35078MR836745

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.