Selfdual spaces with complex structures, Einstein-Weyl geometry and geodesics

David M J. Calderbank; Henrik Pedersen

Annales de l'institut Fourier (2000)

  • Volume: 50, Issue: 3, page 921-963
  • ISSN: 0373-0956

Abstract

top
We study the Jones and Tod correspondence between selfdual conformal 4 -manifolds with a conformal vector field and abelian monopoles on Einstein-Weyl 3 -manifolds, and prove that invariant complex structures correspond to shear-free geodesic congruences. Such congruences exist in abundance and so provide a tool for constructing interesting selfdual geometries with symmetry, unifying the theories of scalar-flat Kähler metrics and hypercomplex structures with symmetry. We also show that in the presence of such a congruence, the Einstein-Weyl equation is equivalent to a pair of coupled monopole equations, and we solve these equations in a special case. The new Einstein-Weyl spaces, which we call Einstein-Weyl “with a geodesic symmetry”, give rise to hypercomplex structures with two commuting triholomorphic vector fields.

How to cite

top

Calderbank, David M J., and Pedersen, Henrik. "Selfdual spaces with complex structures, Einstein-Weyl geometry and geodesics." Annales de l'institut Fourier 50.3 (2000): 921-963. <http://eudml.org/doc/75444>.

@article{Calderbank2000,
abstract = {We study the Jones and Tod correspondence between selfdual conformal $4$-manifolds with a conformal vector field and abelian monopoles on Einstein-Weyl $3$-manifolds, and prove that invariant complex structures correspond to shear-free geodesic congruences. Such congruences exist in abundance and so provide a tool for constructing interesting selfdual geometries with symmetry, unifying the theories of scalar-flat Kähler metrics and hypercomplex structures with symmetry. We also show that in the presence of such a congruence, the Einstein-Weyl equation is equivalent to a pair of coupled monopole equations, and we solve these equations in a special case. The new Einstein-Weyl spaces, which we call Einstein-Weyl “with a geodesic symmetry”, give rise to hypercomplex structures with two commuting triholomorphic vector fields.},
author = {Calderbank, David M J., Pedersen, Henrik},
journal = {Annales de l'institut Fourier},
keywords = {selfdual manifold; Hermitian surface; conformal symmetry; Einstein-Weyl 3-manifold; geodesic congruence; twistor theory; abelian monopoles},
language = {eng},
number = {3},
pages = {921-963},
publisher = {Association des Annales de l'Institut Fourier},
title = {Selfdual spaces with complex structures, Einstein-Weyl geometry and geodesics},
url = {http://eudml.org/doc/75444},
volume = {50},
year = {2000},
}

TY - JOUR
AU - Calderbank, David M J.
AU - Pedersen, Henrik
TI - Selfdual spaces with complex structures, Einstein-Weyl geometry and geodesics
JO - Annales de l'institut Fourier
PY - 2000
PB - Association des Annales de l'Institut Fourier
VL - 50
IS - 3
SP - 921
EP - 963
AB - We study the Jones and Tod correspondence between selfdual conformal $4$-manifolds with a conformal vector field and abelian monopoles on Einstein-Weyl $3$-manifolds, and prove that invariant complex structures correspond to shear-free geodesic congruences. Such congruences exist in abundance and so provide a tool for constructing interesting selfdual geometries with symmetry, unifying the theories of scalar-flat Kähler metrics and hypercomplex structures with symmetry. We also show that in the presence of such a congruence, the Einstein-Weyl equation is equivalent to a pair of coupled monopole equations, and we solve these equations in a special case. The new Einstein-Weyl spaces, which we call Einstein-Weyl “with a geodesic symmetry”, give rise to hypercomplex structures with two commuting triholomorphic vector fields.
LA - eng
KW - selfdual manifold; Hermitian surface; conformal symmetry; Einstein-Weyl 3-manifold; geodesic congruence; twistor theory; abelian monopoles
UR - http://eudml.org/doc/75444
ER -

References

top
  1. [1] V. APOSTOLOV, P. GAUDUCHON, The Riemannian Goldberg-Sachs theorem, Int. J. Math., 8 (1997), 421-439. Zbl0891.53054MR98g:53080
  2. [2] A.L. BESSE, Einstein Manifolds, Ergeb. Math. Grenzgeb., vol. 10, Springer, Berlin, 1987. Zbl0613.53001MR88f:53087
  3. [3] C.P. BOYER, J.D. FINLEY, Killing vectors in self-dual Euclidean Einstein spaces, J. Math. Phys., 23 (1982), 1126-1130. Zbl0484.53051MR84f:53064
  4. [4] D.M.J. CALDERBANK, The geometry of the Toda equation, Edinburgh Preprint MS-99-003, 1999, to appear in J. Geom. Phys. Zbl0979.53046
  5. [5] D.M.J. CALDERBANK, H. PEDERSEN, Einstein-Weyl geometry, in Essays on Einstein Manifolds (eds. C.R. LeBrun and M. Wang), Surveys in Differential Geometry, vol. V, International Press. Zbl0996.53030
  6. [6] D.M.J. CALDERBANK, K.P. TOD, Einstein metrics, hypercomplex structures and the Toda field equation, Edinburgh Preprint MS-98-011, 1998, to appear in Diff. Geom. Appl. Zbl1031.53071
  7. [7] T. CHAVE, K.P. TOD, G. VALENT, (4,0) and (4,4) sigma models with a triholomorphic Killing vector, Phys. Lett., B 383 (1996), 262-270. 
  8. [8] M. DUNAJSKI, K.P. TOD, Einstein-Weyl structures from hyper-Kähler metrics with conformal Killing vectors, Preprint ESI 739, Vienna, 1999. Zbl0997.53036
  9. [9] P. GAUDUCHON, La 1-forme de torsion d'une variété hermitienne compacte, Math. Ann., 267 (1984), 495-518. Zbl0523.53059MR87a:53101
  10. [10] P. GAUDUCHON, Structures de Weyl et théorèmes d'annulation sur une variété conforme autoduale, Ann. Sci. Norm. Sup. Pisa, 18 (1991), 563-629. Zbl0763.53034MR93d:32046
  11. [11] P. GAUDUCHON, Structures de Weyl-Einstein, espaces de twisteurs et variétés de type S1 x S3, J. reine angew. Math., 469 (1995), 1-50. Zbl0858.53039MR97d:53048
  12. [12] P. GAUDUCHON, K.P. TOD, Hyperhermitian metrics with symmetry, J. Geom. Phys., 25 (1998), 291-304. Zbl0945.53042MR2000b:53064
  13. [13] G.W. GIBBONS, S.W. HAWKING, Gravitational multi-instantons, Phys. Lett., 78 B (1978), 430-432. 
  14. [14] N.J. HITCHIN, Complex manifolds and Einstein equations, in Twistor Geometry and Non-linear Systems (eds H.D. Doebner and T.D. Palev), Primorsko 1980, Lecture Notes in Math., vol. 970, Springer, Berlin, 1982, 79-99. Zbl0507.53025
  15. [15] S.A. HUGGETT, K.P. TOD, An Introduction to Twistor Theory, Cambridge University Press, Cambridge, 1985. Zbl0573.53001MR87i:32042
  16. [16] P.E. JONES, K.P. TOD, Minitwistor spaces and Einstein-Weyl spaces, Class. Quantum Grav., 2 (1985), 565-577. Zbl0575.53042MR87b:53115
  17. [17] D.D. JOYCE, Explicit construction of self-dual 4-manifolds, Duke Math. J., 77 (1995), 519-552. Zbl0855.57028MR96d:53049
  18. [18] C.R. LEBRUN, Counterexamples to the generalized positive action conjecture, Comm. Math. Phys., 118 (1988), 591-596. Zbl0659.53050MR89f:53107
  19. [19] C.R. LEBRUN, Explicit self-dual metrics on ℂP2#...#ℂP2, J. Diff. Geom., 34 (1991), 223-253. Zbl0725.53067MR92g:53040
  20. [20] C.R. LEBRUN, Self-dual manifolds and hyperbolic geometry, in Einstein Metrics and Yang-Mills Connections (eds. T. MAbuchi and S. Mukai), Sanda 1990, Lecture Notes in Pure and Appl. Math., vol. 145, Marcel Dekker, New York, 1993, 99-131. Zbl0802.53010
  21. [21] H.-C. LEE, A kind of even-dimensional differential geometry and its application to exterior calculus, Amer. J. Math., 65 (1943), 433-438. Zbl0060.38302MR5,15h
  22. [22] A.B. MADSEN, Einstein-Weyl structures in the conformal classes of LeBrun metrics, Class. Quantum Grav., 14 (1997), 2635-2645. Zbl0899.53040MR99a:53059
  23. [23] L.J. MASON, N.M.J. WOODHOUSE, Integrability, Self-duality and Twistor Theory, Clarendon Press, Oxford, 1996. Zbl0856.58002MR98f:58002
  24. [24] H. PEDERSEN, Einstein metrics, spinning top motions and monopoles, Math. Ann., 274 (1986), 35-39. Zbl0566.53058MR87i:53070
  25. [25] H. PEDERSEN, A. SWANN, Riemannian submersions, four-manifolds and Einstein-Weyl geometry, Proc. London Math. Soc., 66 (1993), 381-399. Zbl0742.53014MR94c:53061
  26. [26] H. PEDERSEN, K.P. TOD, Three-dimensional Einstein-Weyl geometry, Adv. Math., 97 (1993), 74-109. Zbl0778.53041MR93m:53042
  27. [27] H. PEDERSEN, K.P. TOD, Einstein metrics and hyperbolic monopoles, Class. Quantum Grav., 8 (1991), 751-760. Zbl0726.53024MR92f:53053
  28. [28] K.P. TOD, Compact 3-dimensional Einstein-Weyl structures, J. London Math. Soc., 45 (1992), 341-351. Zbl0761.53026MR93d:53058
  29. [29] K.P. TOD, Scalar-flat Kähler and hyper-Kähler metrics from Painlevé-III, Class. Quantum Grav., 12 (1995), 1535-1547. Zbl0828.53061MR96f:53068
  30. [30] K.P. TOD, Cohomogeneity-one metrics with self-dual Weyl tensor, in Twistor Theory (ed. S. Huggett), Lecture Notes in Pure and Appl. Math., vol. 169, Marcel Dekker, Plymouth, 1995, 171-184. Zbl0827.53017MR95i:53056
  31. [31] K.P. TOD, The SU(∞)-Toda field equation and special four-dimensional metrics, in Geometry and Physics (eds. J.E. Andersen, J. Dupont, H. Pedersen and A. Swann), Lecture Notes in Pure and Appl. Math., vol. 184, Marcel Dekker, Aarhus, 1995, 307-312. Zbl0876.53026MR98a:53068
  32. [32] I. VAISMAN, On locally conformal almost Kähler manifolds, Israel J. Math., 24 (1976), 338-351. Zbl0335.53055MR54 #6048
  33. [33] R.S. WARD, Einstein-Weyl spaces and SU(∞) Toda fields, Class. Quantum Grav., 7 (1990), L95-L98. Zbl0687.53044MR91g:83019

NotesEmbed ?

top

You must be logged in to post comments.