Selfdual spaces with complex structures, Einstein-Weyl geometry and geodesics

David M J. Calderbank; Henrik Pedersen

Annales de l'institut Fourier (2000)

  • Volume: 50, Issue: 3, page 921-963
  • ISSN: 0373-0956

Abstract

top
We study the Jones and Tod correspondence between selfdual conformal 4 -manifolds with a conformal vector field and abelian monopoles on Einstein-Weyl 3 -manifolds, and prove that invariant complex structures correspond to shear-free geodesic congruences. Such congruences exist in abundance and so provide a tool for constructing interesting selfdual geometries with symmetry, unifying the theories of scalar-flat Kähler metrics and hypercomplex structures with symmetry. We also show that in the presence of such a congruence, the Einstein-Weyl equation is equivalent to a pair of coupled monopole equations, and we solve these equations in a special case. The new Einstein-Weyl spaces, which we call Einstein-Weyl “with a geodesic symmetry”, give rise to hypercomplex structures with two commuting triholomorphic vector fields.

How to cite

top

Calderbank, David M J., and Pedersen, Henrik. "Selfdual spaces with complex structures, Einstein-Weyl geometry and geodesics." Annales de l'institut Fourier 50.3 (2000): 921-963. <http://eudml.org/doc/75444>.

@article{Calderbank2000,
abstract = {We study the Jones and Tod correspondence between selfdual conformal $4$-manifolds with a conformal vector field and abelian monopoles on Einstein-Weyl $3$-manifolds, and prove that invariant complex structures correspond to shear-free geodesic congruences. Such congruences exist in abundance and so provide a tool for constructing interesting selfdual geometries with symmetry, unifying the theories of scalar-flat Kähler metrics and hypercomplex structures with symmetry. We also show that in the presence of such a congruence, the Einstein-Weyl equation is equivalent to a pair of coupled monopole equations, and we solve these equations in a special case. The new Einstein-Weyl spaces, which we call Einstein-Weyl “with a geodesic symmetry”, give rise to hypercomplex structures with two commuting triholomorphic vector fields.},
author = {Calderbank, David M J., Pedersen, Henrik},
journal = {Annales de l'institut Fourier},
keywords = {selfdual manifold; Hermitian surface; conformal symmetry; Einstein-Weyl 3-manifold; geodesic congruence; twistor theory; abelian monopoles},
language = {eng},
number = {3},
pages = {921-963},
publisher = {Association des Annales de l'Institut Fourier},
title = {Selfdual spaces with complex structures, Einstein-Weyl geometry and geodesics},
url = {http://eudml.org/doc/75444},
volume = {50},
year = {2000},
}

TY - JOUR
AU - Calderbank, David M J.
AU - Pedersen, Henrik
TI - Selfdual spaces with complex structures, Einstein-Weyl geometry and geodesics
JO - Annales de l'institut Fourier
PY - 2000
PB - Association des Annales de l'Institut Fourier
VL - 50
IS - 3
SP - 921
EP - 963
AB - We study the Jones and Tod correspondence between selfdual conformal $4$-manifolds with a conformal vector field and abelian monopoles on Einstein-Weyl $3$-manifolds, and prove that invariant complex structures correspond to shear-free geodesic congruences. Such congruences exist in abundance and so provide a tool for constructing interesting selfdual geometries with symmetry, unifying the theories of scalar-flat Kähler metrics and hypercomplex structures with symmetry. We also show that in the presence of such a congruence, the Einstein-Weyl equation is equivalent to a pair of coupled monopole equations, and we solve these equations in a special case. The new Einstein-Weyl spaces, which we call Einstein-Weyl “with a geodesic symmetry”, give rise to hypercomplex structures with two commuting triholomorphic vector fields.
LA - eng
KW - selfdual manifold; Hermitian surface; conformal symmetry; Einstein-Weyl 3-manifold; geodesic congruence; twistor theory; abelian monopoles
UR - http://eudml.org/doc/75444
ER -

References

top
  1. [1] V. APOSTOLOV, P. GAUDUCHON, The Riemannian Goldberg-Sachs theorem, Int. J. Math., 8 (1997), 421-439. Zbl0891.53054MR98g:53080
  2. [2] A.L. BESSE, Einstein Manifolds, Ergeb. Math. Grenzgeb., vol. 10, Springer, Berlin, 1987. Zbl0613.53001MR88f:53087
  3. [3] C.P. BOYER, J.D. FINLEY, Killing vectors in self-dual Euclidean Einstein spaces, J. Math. Phys., 23 (1982), 1126-1130. Zbl0484.53051MR84f:53064
  4. [4] D.M.J. CALDERBANK, The geometry of the Toda equation, Edinburgh Preprint MS-99-003, 1999, to appear in J. Geom. Phys. Zbl0979.53046
  5. [5] D.M.J. CALDERBANK, H. PEDERSEN, Einstein-Weyl geometry, in Essays on Einstein Manifolds (eds. C.R. LeBrun and M. Wang), Surveys in Differential Geometry, vol. V, International Press. Zbl0996.53030
  6. [6] D.M.J. CALDERBANK, K.P. TOD, Einstein metrics, hypercomplex structures and the Toda field equation, Edinburgh Preprint MS-98-011, 1998, to appear in Diff. Geom. Appl. Zbl1031.53071
  7. [7] T. CHAVE, K.P. TOD, G. VALENT, (4,0) and (4,4) sigma models with a triholomorphic Killing vector, Phys. Lett., B 383 (1996), 262-270. 
  8. [8] M. DUNAJSKI, K.P. TOD, Einstein-Weyl structures from hyper-Kähler metrics with conformal Killing vectors, Preprint ESI 739, Vienna, 1999. Zbl0997.53036
  9. [9] P. GAUDUCHON, La 1-forme de torsion d'une variété hermitienne compacte, Math. Ann., 267 (1984), 495-518. Zbl0523.53059MR87a:53101
  10. [10] P. GAUDUCHON, Structures de Weyl et théorèmes d'annulation sur une variété conforme autoduale, Ann. Sci. Norm. Sup. Pisa, 18 (1991), 563-629. Zbl0763.53034MR93d:32046
  11. [11] P. GAUDUCHON, Structures de Weyl-Einstein, espaces de twisteurs et variétés de type S1 x S3, J. reine angew. Math., 469 (1995), 1-50. Zbl0858.53039MR97d:53048
  12. [12] P. GAUDUCHON, K.P. TOD, Hyperhermitian metrics with symmetry, J. Geom. Phys., 25 (1998), 291-304. Zbl0945.53042MR2000b:53064
  13. [13] G.W. GIBBONS, S.W. HAWKING, Gravitational multi-instantons, Phys. Lett., 78 B (1978), 430-432. 
  14. [14] N.J. HITCHIN, Complex manifolds and Einstein equations, in Twistor Geometry and Non-linear Systems (eds H.D. Doebner and T.D. Palev), Primorsko 1980, Lecture Notes in Math., vol. 970, Springer, Berlin, 1982, 79-99. Zbl0507.53025
  15. [15] S.A. HUGGETT, K.P. TOD, An Introduction to Twistor Theory, Cambridge University Press, Cambridge, 1985. Zbl0573.53001MR87i:32042
  16. [16] P.E. JONES, K.P. TOD, Minitwistor spaces and Einstein-Weyl spaces, Class. Quantum Grav., 2 (1985), 565-577. Zbl0575.53042MR87b:53115
  17. [17] D.D. JOYCE, Explicit construction of self-dual 4-manifolds, Duke Math. J., 77 (1995), 519-552. Zbl0855.57028MR96d:53049
  18. [18] C.R. LEBRUN, Counterexamples to the generalized positive action conjecture, Comm. Math. Phys., 118 (1988), 591-596. Zbl0659.53050MR89f:53107
  19. [19] C.R. LEBRUN, Explicit self-dual metrics on ℂP2#...#ℂP2, J. Diff. Geom., 34 (1991), 223-253. Zbl0725.53067MR92g:53040
  20. [20] C.R. LEBRUN, Self-dual manifolds and hyperbolic geometry, in Einstein Metrics and Yang-Mills Connections (eds. T. MAbuchi and S. Mukai), Sanda 1990, Lecture Notes in Pure and Appl. Math., vol. 145, Marcel Dekker, New York, 1993, 99-131. Zbl0802.53010
  21. [21] H.-C. LEE, A kind of even-dimensional differential geometry and its application to exterior calculus, Amer. J. Math., 65 (1943), 433-438. Zbl0060.38302MR5,15h
  22. [22] A.B. MADSEN, Einstein-Weyl structures in the conformal classes of LeBrun metrics, Class. Quantum Grav., 14 (1997), 2635-2645. Zbl0899.53040MR99a:53059
  23. [23] L.J. MASON, N.M.J. WOODHOUSE, Integrability, Self-duality and Twistor Theory, Clarendon Press, Oxford, 1996. Zbl0856.58002MR98f:58002
  24. [24] H. PEDERSEN, Einstein metrics, spinning top motions and monopoles, Math. Ann., 274 (1986), 35-39. Zbl0566.53058MR87i:53070
  25. [25] H. PEDERSEN, A. SWANN, Riemannian submersions, four-manifolds and Einstein-Weyl geometry, Proc. London Math. Soc., 66 (1993), 381-399. Zbl0742.53014MR94c:53061
  26. [26] H. PEDERSEN, K.P. TOD, Three-dimensional Einstein-Weyl geometry, Adv. Math., 97 (1993), 74-109. Zbl0778.53041MR93m:53042
  27. [27] H. PEDERSEN, K.P. TOD, Einstein metrics and hyperbolic monopoles, Class. Quantum Grav., 8 (1991), 751-760. Zbl0726.53024MR92f:53053
  28. [28] K.P. TOD, Compact 3-dimensional Einstein-Weyl structures, J. London Math. Soc., 45 (1992), 341-351. Zbl0761.53026MR93d:53058
  29. [29] K.P. TOD, Scalar-flat Kähler and hyper-Kähler metrics from Painlevé-III, Class. Quantum Grav., 12 (1995), 1535-1547. Zbl0828.53061MR96f:53068
  30. [30] K.P. TOD, Cohomogeneity-one metrics with self-dual Weyl tensor, in Twistor Theory (ed. S. Huggett), Lecture Notes in Pure and Appl. Math., vol. 169, Marcel Dekker, Plymouth, 1995, 171-184. Zbl0827.53017MR95i:53056
  31. [31] K.P. TOD, The SU(∞)-Toda field equation and special four-dimensional metrics, in Geometry and Physics (eds. J.E. Andersen, J. Dupont, H. Pedersen and A. Swann), Lecture Notes in Pure and Appl. Math., vol. 184, Marcel Dekker, Aarhus, 1995, 307-312. Zbl0876.53026MR98a:53068
  32. [32] I. VAISMAN, On locally conformal almost Kähler manifolds, Israel J. Math., 24 (1976), 338-351. Zbl0335.53055MR54 #6048
  33. [33] R.S. WARD, Einstein-Weyl spaces and SU(∞) Toda fields, Class. Quantum Grav., 7 (1990), L95-L98. Zbl0687.53044MR91g:83019

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.