Flows of flowable Reeb homeomorphisms
- [1] Nihon University Department of Mathematics College of Science and Technology 1-8-14 Kanda, Surugadai, Chiyoda-ku Tokyo, 101-8308 (Japan)
Annales de l’institut Fourier (2012)
- Volume: 62, Issue: 3, page 887-897
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topMatsumoto, Shigenori. "Flows of flowable Reeb homeomorphisms." Annales de l’institut Fourier 62.3 (2012): 887-897. <http://eudml.org/doc/251073>.
@article{Matsumoto2012,
abstract = {We consider a fixed point free homeomorphism $h$ of the closed band $B=\mathbb\{R\}\times [0,1]$ which leaves each leaf of a Reeb foliation on $B$ invariant. Assuming $h$ is the time one of various topological flows, we compare the restriction of the flows on the boundary.},
affiliation = {Nihon University Department of Mathematics College of Science and Technology 1-8-14 Kanda, Surugadai, Chiyoda-ku Tokyo, 101-8308 (Japan)},
author = {Matsumoto, Shigenori},
journal = {Annales de l’institut Fourier},
keywords = {Reeb foliations; homeomorphisms; topological conjugacy},
language = {eng},
number = {3},
pages = {887-897},
publisher = {Association des Annales de l’institut Fourier},
title = {Flows of flowable Reeb homeomorphisms},
url = {http://eudml.org/doc/251073},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Matsumoto, Shigenori
TI - Flows of flowable Reeb homeomorphisms
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 3
SP - 887
EP - 897
AB - We consider a fixed point free homeomorphism $h$ of the closed band $B=\mathbb{R}\times [0,1]$ which leaves each leaf of a Reeb foliation on $B$ invariant. Assuming $h$ is the time one of various topological flows, we compare the restriction of the flows on the boundary.
LA - eng
KW - Reeb foliations; homeomorphisms; topological conjugacy
UR - http://eudml.org/doc/251073
ER -
References
top- LEJ Brouwer, Beweis des Ebenen Translationssatzes, Math. Ann. 72 (1912), 37-54 Zbl43.0569.02MR1511684
- François Béguin, Frédéric Le Roux, Ensemble oscillant d’un homéomorphisme de Brouwer, homéomorphismes de Reeb, Bull. Soc. Math. France 131 (2003), 149-210 Zbl1026.37033MR1988946
- Béla De Kerékjártó, Sur le groupe des transformations topologiques du plan, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (2) 3 (1934), 393-400 Zbl0010.03902MR1556737
- Albert Fathi, An orbit closing proof of Brouwer’s lemma on translation arcs, Enseign. Math. (2) 33 (1987), 315-322 Zbl0649.54022MR925994
- John Franks, A new proof of the Brouwer plane translation theorem, Ergodic Theory Dynam. Systems 12 (1992), 217-226 Zbl0767.58025MR1176619
- Lucien Guillou, Théorème de translation plane de Brouwer et généralisations du théorème de Poincaré-Birkhoff, Topology 33 (1994), 331-351 Zbl0924.55001MR1273787
- André Haefliger, Georges Reeb, Variétés (non séparées) à une dimension et structures feuilletées du plan, Enseignement Math. (2) 3 (1957), 107-125 Zbl0079.17101MR89412
- Tatsuo Homma, Hidetaka Terasaka, On the structure of the plane translation of Brouwer, Osaka Math. J. 5 (1953), 233-266 Zbl0051.14701MR58963
- F. Le Roux, A. G. O’Farrell, M. Roginskaya, I. Short, Flowability of plane homeomorphisms
- Frédéric Le Roux, Classes de conjugaison des flots du plan topologiquement équivalents au flot de Reeb, C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), 45-50 Zbl0922.58069MR1674425
- Hiromichi Nakayama, A non-flowable plane homeomorphism whose non-Hausdorff set consists of two disjoint lines, Houston J. Math. 21 (1995), 569-572 Zbl0857.54040MR1352607
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.