Minimal thinness for subordinate Brownian motion in half-space
Panki Kim[1]; Renming Song[2]; Zoran Vondraček[3]
- [1] Department of Mathematics, Seoul National University, Building 27, 1 Gwanak-ro, Gwanak-gu, Seoul 151-747, Republic of Korea
- [2] Department of Mathematics, University of Illinois, Urbana, IL 61801, USA
- [3] Department of Mathematics, University of Zagreb, Zagreb, Croatia
Annales de l’institut Fourier (2012)
- Volume: 62, Issue: 3, page 1045-1080
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topKim, Panki, Song, Renming, and Vondraček, Zoran. "Minimal thinness for subordinate Brownian motion in half-space." Annales de l’institut Fourier 62.3 (2012): 1045-1080. <http://eudml.org/doc/251076>.
@article{Kim2012,
abstract = {We study minimal thinness in the half-space $H:=\lbrace x=(\widetilde\{x\}, x_d):\, \widetilde\{x\}\in \mathbb\{R\}^\{d-1\}, x_d>0\rbrace $ for a large class of subordinate Brownian motions. We show that the same test for the minimal thinness of a subset of $H$ below the graph of a nonnegative Lipschitz function is valid for all processes in the considered class. In the classical case of Brownian motion this test was proved by Burdzy.},
affiliation = {Department of Mathematics, Seoul National University, Building 27, 1 Gwanak-ro, Gwanak-gu, Seoul 151-747, Republic of Korea; Department of Mathematics, University of Illinois, Urbana, IL 61801, USA; Department of Mathematics, University of Zagreb, Zagreb, Croatia},
author = {Kim, Panki, Song, Renming, Vondraček, Zoran},
journal = {Annales de l’institut Fourier},
keywords = {Minimal thinness; subordinate Brownian motion; boundary Harnack principle; Green function; Martin kernel; minimal thinness},
language = {eng},
number = {3},
pages = {1045-1080},
publisher = {Association des Annales de l’institut Fourier},
title = {Minimal thinness for subordinate Brownian motion in half-space},
url = {http://eudml.org/doc/251076},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Kim, Panki
AU - Song, Renming
AU - Vondraček, Zoran
TI - Minimal thinness for subordinate Brownian motion in half-space
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 3
SP - 1045
EP - 1080
AB - We study minimal thinness in the half-space $H:=\lbrace x=(\widetilde{x}, x_d):\, \widetilde{x}\in \mathbb{R}^{d-1}, x_d>0\rbrace $ for a large class of subordinate Brownian motions. We show that the same test for the minimal thinness of a subset of $H$ below the graph of a nonnegative Lipschitz function is valid for all processes in the considered class. In the classical case of Brownian motion this test was proved by Burdzy.
LA - eng
KW - Minimal thinness; subordinate Brownian motion; boundary Harnack principle; Green function; Martin kernel; minimal thinness
UR - http://eudml.org/doc/251076
ER -
References
top- D. H. Armitage, S. J. Gardiner, Classical potential theory, (2001), Springer-Verlag London Ltd., London Zbl0972.31001MR1801253
- J. Bertoin, Lévy processes, 121 (1996), Cambridge University Press, Cambridge Zbl0861.60003MR1406564
- A. Beurling, A minimum principle for positive harmonic functions, Ann. Acad. Sci. Fenn. Ser. A I No. 372 (1965) Zbl0139.06402MR188466
- N. H. Bingham, C. M. Goldie, J. L. Teugels, Regular variation, 27 (1987), Cambridge University Press, Cambridge Zbl0667.26003MR898871
- J. Bliedtner, W. Hansen, Potential theory. An analytic and probabilistic approach to balayage, (1986), Springer-Verlag, Berlin Zbl0706.31001MR850715
- K. Bogdan, The boundary Harnack principle for the fractional Laplacian, Studia Math. 123 (1997), 43-80 Zbl0870.31009MR1438304
- K. Bogdan, Representation of -harmonic functions in Lipschitz domains, Hiroshima Math. J. 29 (1999), 227-243 Zbl0936.31008MR1704245
- K. Bogdan, T. Byczkowski, T. Kulczycki, M. Ryznar, R. Song, Z. Vondraček, Potential analysis of stable processes and its extensions, 1980 (2009), Springer-Verlag, Berlin MR2569321
- K. Burdzy, Brownian excursions and minimal thinness. I, Ann. Probab. 15 (1987), 676-689 Zbl0656.60051MR885137
- Z.-Q. Chen, P. Kim, R. Song, Global heat kernel estimate for in half space like open sets, Preprint (2011) MR2775111
- Z.-Q. Chen, P. Kim, R. Song, Z. Vondraček, Boundary Harnack principle , To appear in Trans. Amer. Math. Soc. (2011) MR2912450
- Z.-Q. Chen, P. Kim, R. Song, Z. Vondraček, Sharp Green function estimates for in open sets and their applications, To appear in Illinois J. Math. (2011)
- Z.-Q. Chen, R. Song, Martin boundary and integral representation for harmonic functions of symmetric stable processes, J. Funct. Anal. 159 (1998), 267-294 Zbl0954.60003MR1654115
- B. Dahlberg, A minimum principle for positive harmonic functions, Proc. London Math. Soc. (3) 33 (1976), 238-250 Zbl0342.31004MR409847
- J. L. Doob, Classical potential theory and its probabilistic counterpart, 262 (1984), Springer-Verlag, New York Zbl0549.31001MR731258
- H. Föllmer, Feine Topologie am Martinrand eines Standardprozesses, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 12 (1969), 127-144 Zbl0172.21601MR245092
- S. J. Gardiner, A short proof of Burdzy’s theorem on the angular derivative, Bull. London Math. Soc. 23 (1991), 575-579 Zbl0718.31005MR1135189
- P. Kim, R. Song, Boundary behavior of harmonic functions for truncated stable processes, J. Theoret. Probab. 21 (2008), 287-321 Zbl1145.60026MR2391246
- P. Kim, R. Song, Z. Vondraček, Boundary Harnack principle for subordinate Brownian motions, Stochastic Process. Appl. 119 (2009), 1601-1631 Zbl1166.60046MR2513121
- P. Kim, R. Song, Z. Vondraček, On the potential theory of one-dimensional subordinate Brownian motions with continuous components, Potential Anal. 33 (2010), 153-173 Zbl1202.60125MR2658980
- P. Kim, R. Song, Z. Vondraček, Potential theory of subordinate Brownian motions revisited, To appear in a volume in honor of Prof. Jiaan Yan (2011) Zbl1282.60076
- P. Kim, R. Song, Z. Vondraček, Potential theory of subordinate Brownian motions with Gaussian components, Preprint (2011) Zbl1266.31007
- P. Kim, R. Song, Z. Vondraček, Two-sided Green function estimates for killed subordinate Brownian motions, To appear in Proc. London Math. Soc. (2012) Zbl1248.60091
- H. Kunita, T. Watanabe, Markov processes and Martin boundaries. I, Illinois J. Math. 9 (1965), 485-526 Zbl0147.16505MR181010
- L. Naïm, Sur le rôle de la frontière de R. S. Martin dans la théorie du potentiel, Ann. Inst. Fourier, Grenoble 7 (1957), 183-281 Zbl0086.30603MR100174
- S. C. Port, C. J. Stone, Brownian motion and classical potential theory, (1978), Academic Press [Harcourt Brace Jovanovich Publishers], New York Zbl0413.60067MR492329
- M. Rao, R. Song, Z. Vondraček, Green function estimates and Harnack inequality for subordinate Brownian motions, Potential Anal. 25 (2006), 1-27 Zbl1107.60042MR2238934
- R. L. Schilling, R. Song, Z. Vondraček, Bernstein functions, 37 (2010), Walter de Gruyter & Co., Berlin MR2598208
- P. Sjögren, La convolution dans faible de , Séminaire Choquet, 13e année (1973/74), Initiation à l’analyse, Exp. No. 14 (1975), Secrétariat Mathématique, Paris Zbl0317.42019MR477597
- P. Sjögren, Une propriété des fonctions harmoniques positives, d’après Dahlberg, Séminaire de Théorie du Potentiel de Paris, No. 2 (Univ. Paris, Paris, 1975–1976) (1976), 275-282. Lecture Notes in Math., Vol. 563, Springer, Berlin Zbl0339.31005MR588344
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.