Minimal thinness for subordinate Brownian motion in half-space

Panki Kim[1]; Renming Song[2]; Zoran Vondraček[3]

  • [1] Department of Mathematics, Seoul National University, Building 27, 1 Gwanak-ro, Gwanak-gu, Seoul 151-747, Republic of Korea
  • [2] Department of Mathematics, University of Illinois, Urbana, IL 61801, USA
  • [3] Department of Mathematics, University of Zagreb, Zagreb, Croatia

Annales de l’institut Fourier (2012)

  • Volume: 62, Issue: 3, page 1045-1080
  • ISSN: 0373-0956

Abstract

top
We study minimal thinness in the half-space H : = { x = ( x ˜ , x d ) : x ˜ d - 1 , x d > 0 } for a large class of subordinate Brownian motions. We show that the same test for the minimal thinness of a subset of H below the graph of a nonnegative Lipschitz function is valid for all processes in the considered class. In the classical case of Brownian motion this test was proved by Burdzy.

How to cite

top

Kim, Panki, Song, Renming, and Vondraček, Zoran. "Minimal thinness for subordinate Brownian motion in half-space." Annales de l’institut Fourier 62.3 (2012): 1045-1080. <http://eudml.org/doc/251076>.

@article{Kim2012,
abstract = {We study minimal thinness in the half-space $H:=\lbrace x=(\widetilde\{x\}, x_d):\, \widetilde\{x\}\in \mathbb\{R\}^\{d-1\}, x_d&gt;0\rbrace $ for a large class of subordinate Brownian motions. We show that the same test for the minimal thinness of a subset of $H$ below the graph of a nonnegative Lipschitz function is valid for all processes in the considered class. In the classical case of Brownian motion this test was proved by Burdzy.},
affiliation = {Department of Mathematics, Seoul National University, Building 27, 1 Gwanak-ro, Gwanak-gu, Seoul 151-747, Republic of Korea; Department of Mathematics, University of Illinois, Urbana, IL 61801, USA; Department of Mathematics, University of Zagreb, Zagreb, Croatia},
author = {Kim, Panki, Song, Renming, Vondraček, Zoran},
journal = {Annales de l’institut Fourier},
keywords = {Minimal thinness; subordinate Brownian motion; boundary Harnack principle; Green function; Martin kernel; minimal thinness},
language = {eng},
number = {3},
pages = {1045-1080},
publisher = {Association des Annales de l’institut Fourier},
title = {Minimal thinness for subordinate Brownian motion in half-space},
url = {http://eudml.org/doc/251076},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Kim, Panki
AU - Song, Renming
AU - Vondraček, Zoran
TI - Minimal thinness for subordinate Brownian motion in half-space
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 3
SP - 1045
EP - 1080
AB - We study minimal thinness in the half-space $H:=\lbrace x=(\widetilde{x}, x_d):\, \widetilde{x}\in \mathbb{R}^{d-1}, x_d&gt;0\rbrace $ for a large class of subordinate Brownian motions. We show that the same test for the minimal thinness of a subset of $H$ below the graph of a nonnegative Lipschitz function is valid for all processes in the considered class. In the classical case of Brownian motion this test was proved by Burdzy.
LA - eng
KW - Minimal thinness; subordinate Brownian motion; boundary Harnack principle; Green function; Martin kernel; minimal thinness
UR - http://eudml.org/doc/251076
ER -

References

top
  1. D. H. Armitage, S. J. Gardiner, Classical potential theory, (2001), Springer-Verlag London Ltd., London Zbl0972.31001MR1801253
  2. J. Bertoin, Lévy processes, 121 (1996), Cambridge University Press, Cambridge Zbl0861.60003MR1406564
  3. A. Beurling, A minimum principle for positive harmonic functions, Ann. Acad. Sci. Fenn. Ser. A I No. 372 (1965) Zbl0139.06402MR188466
  4. N. H. Bingham, C. M. Goldie, J. L. Teugels, Regular variation, 27 (1987), Cambridge University Press, Cambridge Zbl0667.26003MR898871
  5. J. Bliedtner, W. Hansen, Potential theory. An analytic and probabilistic approach to balayage, (1986), Springer-Verlag, Berlin Zbl0706.31001MR850715
  6. K. Bogdan, The boundary Harnack principle for the fractional Laplacian, Studia Math. 123 (1997), 43-80 Zbl0870.31009MR1438304
  7. K. Bogdan, Representation of α -harmonic functions in Lipschitz domains, Hiroshima Math. J. 29 (1999), 227-243 Zbl0936.31008MR1704245
  8. K. Bogdan, T. Byczkowski, T. Kulczycki, M. Ryznar, R. Song, Z. Vondraček, Potential analysis of stable processes and its extensions, 1980 (2009), Springer-Verlag, Berlin MR2569321
  9. K. Burdzy, Brownian excursions and minimal thinness. I, Ann. Probab. 15 (1987), 676-689 Zbl0656.60051MR885137
  10. Z.-Q. Chen, P. Kim, R. Song, Global heat kernel estimate for Δ + Δ α / 2 in half space like open sets, Preprint (2011) MR2775111
  11. Z.-Q. Chen, P. Kim, R. Song, Z. Vondraček, Boundary Harnack principle Δ + Δ α / 2 , To appear in Trans. Amer. Math. Soc. (2011) MR2912450
  12. Z.-Q. Chen, P. Kim, R. Song, Z. Vondraček, Sharp Green function estimates for Δ + Δ α / 2 in C 1 , 1 open sets and their applications, To appear in Illinois J. Math. (2011) 
  13. Z.-Q. Chen, R. Song, Martin boundary and integral representation for harmonic functions of symmetric stable processes, J. Funct. Anal. 159 (1998), 267-294 Zbl0954.60003MR1654115
  14. B. Dahlberg, A minimum principle for positive harmonic functions, Proc. London Math. Soc. (3) 33 (1976), 238-250 Zbl0342.31004MR409847
  15. J. L. Doob, Classical potential theory and its probabilistic counterpart, 262 (1984), Springer-Verlag, New York Zbl0549.31001MR731258
  16. H. Föllmer, Feine Topologie am Martinrand eines Standardprozesses, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 12 (1969), 127-144 Zbl0172.21601MR245092
  17. S. J. Gardiner, A short proof of Burdzy’s theorem on the angular derivative, Bull. London Math. Soc. 23 (1991), 575-579 Zbl0718.31005MR1135189
  18. P. Kim, R. Song, Boundary behavior of harmonic functions for truncated stable processes, J. Theoret. Probab. 21 (2008), 287-321 Zbl1145.60026MR2391246
  19. P. Kim, R. Song, Z. Vondraček, Boundary Harnack principle for subordinate Brownian motions, Stochastic Process. Appl. 119 (2009), 1601-1631 Zbl1166.60046MR2513121
  20. P. Kim, R. Song, Z. Vondraček, On the potential theory of one-dimensional subordinate Brownian motions with continuous components, Potential Anal. 33 (2010), 153-173 Zbl1202.60125MR2658980
  21. P. Kim, R. Song, Z. Vondraček, Potential theory of subordinate Brownian motions revisited, To appear in a volume in honor of Prof. Jiaan Yan (2011) Zbl1282.60076
  22. P. Kim, R. Song, Z. Vondraček, Potential theory of subordinate Brownian motions with Gaussian components, Preprint (2011) Zbl1266.31007
  23. P. Kim, R. Song, Z. Vondraček, Two-sided Green function estimates for killed subordinate Brownian motions, To appear in Proc. London Math. Soc. (2012) Zbl1248.60091
  24. H. Kunita, T. Watanabe, Markov processes and Martin boundaries. I, Illinois J. Math. 9 (1965), 485-526 Zbl0147.16505MR181010
  25. L. Naïm, Sur le rôle de la frontière de R. S. Martin dans la théorie du potentiel, Ann. Inst. Fourier, Grenoble 7 (1957), 183-281 Zbl0086.30603MR100174
  26. S. C. Port, C. J. Stone, Brownian motion and classical potential theory, (1978), Academic Press [Harcourt Brace Jovanovich Publishers], New York Zbl0413.60067MR492329
  27. M. Rao, R. Song, Z. Vondraček, Green function estimates and Harnack inequality for subordinate Brownian motions, Potential Anal. 25 (2006), 1-27 Zbl1107.60042MR2238934
  28. R. L. Schilling, R. Song, Z. Vondraček, Bernstein functions, 37 (2010), Walter de Gruyter & Co., Berlin MR2598208
  29. P. Sjögren, La convolution dans L 1 faible de R n , Séminaire Choquet, 13e année (1973/74), Initiation à l’analyse, Exp. No. 14 (1975), Secrétariat Mathématique, Paris Zbl0317.42019MR477597
  30. P. Sjögren, Une propriété des fonctions harmoniques positives, d’après Dahlberg, Séminaire de Théorie du Potentiel de Paris, No. 2 (Univ. Paris, Paris, 1975–1976) (1976), 275-282. Lecture Notes in Math., Vol. 563, Springer, Berlin Zbl0339.31005MR588344

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.