Invariants and coinvariants of semilocal units modulo elliptic units

Stéphane Viguié[1]

  • [1] Université de Franche-Comté 16 route de Gray 25030 Besançon cedex, France

Journal de Théorie des Nombres de Bordeaux (2012)

  • Volume: 24, Issue: 2, page 487-504
  • ISSN: 1246-7405

Abstract

top
Let p be a prime number, and let k be an imaginary quadratic number field in which p decomposes into two primes 𝔭 and 𝔭 ¯ . Let k be the unique p -extension of k which is unramified outside of 𝔭 , and let K be a finite extension of k , abelian over k . Let 𝒰 / 𝒞 be the projective limit of principal semi-local units modulo elliptic units. We prove that the various modules of invariants and coinvariants of 𝒰 / 𝒞 are finite. Our approach uses distributions and the p -adic L -function, as defined in [5].

How to cite

top

Viguié, Stéphane. "Invariants and coinvariants of semilocal units modulo elliptic units." Journal de Théorie des Nombres de Bordeaux 24.2 (2012): 487-504. <http://eudml.org/doc/251078>.

@article{Viguié2012,
abstract = {Let $p$ be a prime number, and let $k$ be an imaginary quadratic number field in which $p$ decomposes into two primes $\mathfrak\{p\}$ and $\bar\{\mathfrak\{p\}\}$. Let $k_\infty $ be the unique $\mathbb\{Z\}_p$-extension of $k$ which is unramified outside of $\mathfrak\{p\}$, and let $K_\infty $ be a finite extension of $k_\infty $, abelian over $k$. Let $\mathcal\{U\}_\infty /\mathcal\{C\}_\infty $ be the projective limit of principal semi-local units modulo elliptic units. We prove that the various modules of invariants and coinvariants of $\mathcal\{U\}_\infty /\mathcal\{C\}_\infty $ are finite. Our approach uses distributions and the $p$-adic $\mathrm\{L\}$-function, as defined in [5].},
affiliation = {Université de Franche-Comté 16 route de Gray 25030 Besançon cedex, France},
author = {Viguié, Stéphane},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Iwasawa theory; main conjecture; imaginary quadratic number fields; semi-local units; elliptic units},
language = {eng},
month = {6},
number = {2},
pages = {487-504},
publisher = {Société Arithmétique de Bordeaux},
title = {Invariants and coinvariants of semilocal units modulo elliptic units},
url = {http://eudml.org/doc/251078},
volume = {24},
year = {2012},
}

TY - JOUR
AU - Viguié, Stéphane
TI - Invariants and coinvariants of semilocal units modulo elliptic units
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2012/6//
PB - Société Arithmétique de Bordeaux
VL - 24
IS - 2
SP - 487
EP - 504
AB - Let $p$ be a prime number, and let $k$ be an imaginary quadratic number field in which $p$ decomposes into two primes $\mathfrak{p}$ and $\bar{\mathfrak{p}}$. Let $k_\infty $ be the unique $\mathbb{Z}_p$-extension of $k$ which is unramified outside of $\mathfrak{p}$, and let $K_\infty $ be a finite extension of $k_\infty $, abelian over $k$. Let $\mathcal{U}_\infty /\mathcal{C}_\infty $ be the projective limit of principal semi-local units modulo elliptic units. We prove that the various modules of invariants and coinvariants of $\mathcal{U}_\infty /\mathcal{C}_\infty $ are finite. Our approach uses distributions and the $p$-adic $\mathrm{L}$-function, as defined in [5].
LA - eng
KW - Iwasawa theory; main conjecture; imaginary quadratic number fields; semi-local units; elliptic units
UR - http://eudml.org/doc/251078
ER -

References

top
  1. J-R. Belliard, Global Units modulo Circular Units: descent without Iwasawa’s Main Conjecture. Canadian J. Math. 61 (2009), 518–533. Zbl1205.11115MR2514482
  2. W. Bley, On the Equivariant Tamagawa Number Conjecture for Abelian Extensions of a Quadratic Imaginary Field. Documenta Mathematica 11 (2006), 73–118. Zbl1178.11070MR2226270
  3. A. Brumer, On the units of algebraic number fields. Mathematika 14 (1967), 121–124. Zbl0171.01105MR220694
  4. J. Coates and A. Wiles, On p -adic l -functions and elliptic units. J. Australian Math. Soc. 26, (1978), 1–25. Zbl0442.12007MR510581
  5. E. de Shalit, Iwasawa Theory of Elliptic Curves with Complex Multiplication. Perspectives in Mathematics 3, Academic Press, 1987. Zbl0674.12004MR917944
  6. R. Gillard, Fonctions L p -adiques des corps quadratiques imaginaires et de leurs extensions abéliennes. J. Reine Angew. Math. 358 (1985), 76–91. Zbl0551.12011MR797675
  7. C. Greither, Class groups of abelian fields, and the main conjecture. Annal. Inst. Fourier 42 (1992), 445–499. Zbl0729.11053MR1182638
  8. K. Iwasawa, Lectures on p -adic L -functions. Princeton University Press, 1972. Zbl0236.12001MR360526
  9. S. Lang, Cyclotomic Fields I and II. Springer-Verlag, 1990. Zbl0395.12005MR1029028
  10. Neukirch, Schmidt and Wingberg, Cohomology of Number Fields. Springer-Verlag, 2000. Zbl0948.11001MR1737196
  11. H. Oukhaba, On Iwasawa theory of elliptic units and 2 -ideal class groups. Prépub. lab. Math. Besançon (2010). Zbl1272.11118
  12. G. Robert, Unités elliptiques. Bull. soc. math. France 36, (1973). Zbl0314.12006MR469889
  13. G. Robert, Unités de Stark comme unités elliptiques. Prépub. Inst. Fourier 143, (1989). 
  14. G. Robert, Concernant la relation de distribution satisfaite par la fonction ϕ associée à un réseau complexe. Inven. math. 100 (1990), 231–257. Zbl0729.11029MR1047134
  15. K. Rubin, The ”main conjectures” of Iwasawa theory for imaginary quadratic fields. Inven. math. 103 (1991), 25–68. Zbl0737.11030MR1079839
  16. K. Rubin, More ”Main Conjectures” for Imaginary Quadratic Fields. Centre Rech. Math. 4 (1994), 23–28. Zbl0809.11066MR1260952
  17. S. Viguié, On the classical main conjecture for imaginary quadratic fields. Prépub. lab. Math. Besançon (2011). Zbl1294.11197
  18. S. Viguié, Global units modulo elliptic units and ideal class groups. to appear in Int. J. Number Theory. Zbl1268.11083

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.