Invariants and coinvariants of semilocal units modulo elliptic units
- [1] Université de Franche-Comté 16 route de Gray 25030 Besançon cedex, France
Journal de Théorie des Nombres de Bordeaux (2012)
- Volume: 24, Issue: 2, page 487-504
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topViguié, Stéphane. "Invariants and coinvariants of semilocal units modulo elliptic units." Journal de Théorie des Nombres de Bordeaux 24.2 (2012): 487-504. <http://eudml.org/doc/251078>.
@article{Viguié2012,
abstract = {Let $p$ be a prime number, and let $k$ be an imaginary quadratic number field in which $p$ decomposes into two primes $\mathfrak\{p\}$ and $\bar\{\mathfrak\{p\}\}$. Let $k_\infty $ be the unique $\mathbb\{Z\}_p$-extension of $k$ which is unramified outside of $\mathfrak\{p\}$, and let $K_\infty $ be a finite extension of $k_\infty $, abelian over $k$. Let $\mathcal\{U\}_\infty /\mathcal\{C\}_\infty $ be the projective limit of principal semi-local units modulo elliptic units. We prove that the various modules of invariants and coinvariants of $\mathcal\{U\}_\infty /\mathcal\{C\}_\infty $ are finite. Our approach uses distributions and the $p$-adic $\mathrm\{L\}$-function, as defined in [5].},
affiliation = {Université de Franche-Comté 16 route de Gray 25030 Besançon cedex, France},
author = {Viguié, Stéphane},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Iwasawa theory; main conjecture; imaginary quadratic number fields; semi-local units; elliptic units},
language = {eng},
month = {6},
number = {2},
pages = {487-504},
publisher = {Société Arithmétique de Bordeaux},
title = {Invariants and coinvariants of semilocal units modulo elliptic units},
url = {http://eudml.org/doc/251078},
volume = {24},
year = {2012},
}
TY - JOUR
AU - Viguié, Stéphane
TI - Invariants and coinvariants of semilocal units modulo elliptic units
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2012/6//
PB - Société Arithmétique de Bordeaux
VL - 24
IS - 2
SP - 487
EP - 504
AB - Let $p$ be a prime number, and let $k$ be an imaginary quadratic number field in which $p$ decomposes into two primes $\mathfrak{p}$ and $\bar{\mathfrak{p}}$. Let $k_\infty $ be the unique $\mathbb{Z}_p$-extension of $k$ which is unramified outside of $\mathfrak{p}$, and let $K_\infty $ be a finite extension of $k_\infty $, abelian over $k$. Let $\mathcal{U}_\infty /\mathcal{C}_\infty $ be the projective limit of principal semi-local units modulo elliptic units. We prove that the various modules of invariants and coinvariants of $\mathcal{U}_\infty /\mathcal{C}_\infty $ are finite. Our approach uses distributions and the $p$-adic $\mathrm{L}$-function, as defined in [5].
LA - eng
KW - Iwasawa theory; main conjecture; imaginary quadratic number fields; semi-local units; elliptic units
UR - http://eudml.org/doc/251078
ER -
References
top- J-R. Belliard, Global Units modulo Circular Units: descent without Iwasawa’s Main Conjecture. Canadian J. Math. 61 (2009), 518–533. Zbl1205.11115MR2514482
- W. Bley, On the Equivariant Tamagawa Number Conjecture for Abelian Extensions of a Quadratic Imaginary Field. Documenta Mathematica 11 (2006), 73–118. Zbl1178.11070MR2226270
- A. Brumer, On the units of algebraic number fields. Mathematika 14 (1967), 121–124. Zbl0171.01105MR220694
- J. Coates and A. Wiles, On -adic -functions and elliptic units. J. Australian Math. Soc. 26, (1978), 1–25. Zbl0442.12007MR510581
- E. de Shalit, Iwasawa Theory of Elliptic Curves with Complex Multiplication. Perspectives in Mathematics 3, Academic Press, 1987. Zbl0674.12004MR917944
- R. Gillard, Fonctions -adiques des corps quadratiques imaginaires et de leurs extensions abéliennes. J. Reine Angew. Math. 358 (1985), 76–91. Zbl0551.12011MR797675
- C. Greither, Class groups of abelian fields, and the main conjecture. Annal. Inst. Fourier 42 (1992), 445–499. Zbl0729.11053MR1182638
- K. Iwasawa, Lectures on -adic -functions. Princeton University Press, 1972. Zbl0236.12001MR360526
- S. Lang, Cyclotomic Fields I and II. Springer-Verlag, 1990. Zbl0395.12005MR1029028
- Neukirch, Schmidt and Wingberg, Cohomology of Number Fields. Springer-Verlag, 2000. Zbl0948.11001MR1737196
- H. Oukhaba, On Iwasawa theory of elliptic units and -ideal class groups. Prépub. lab. Math. Besançon (2010). Zbl1272.11118
- G. Robert, Unités elliptiques. Bull. soc. math. France 36, (1973). Zbl0314.12006MR469889
- G. Robert, Unités de Stark comme unités elliptiques. Prépub. Inst. Fourier 143, (1989).
- G. Robert, Concernant la relation de distribution satisfaite par la fonction associée à un réseau complexe. Inven. math. 100 (1990), 231–257. Zbl0729.11029MR1047134
- K. Rubin, The ”main conjectures” of Iwasawa theory for imaginary quadratic fields. Inven. math. 103 (1991), 25–68. Zbl0737.11030MR1079839
- K. Rubin, More ”Main Conjectures” for Imaginary Quadratic Fields. Centre Rech. Math. 4 (1994), 23–28. Zbl0809.11066MR1260952
- S. Viguié, On the classical main conjecture for imaginary quadratic fields. Prépub. lab. Math. Besançon (2011). Zbl1294.11197
- S. Viguié, Global units modulo elliptic units and ideal class groups. to appear in Int. J. Number Theory. Zbl1268.11083
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.