In a shadow of the RH: Cyclic vectors of Hardy spaces on the Hilbert multidisc
- [1] Université de Bordeaux 1 UFR de Mathématiques et Informatique 351 cours de la Libération 33405 Talence France Steklov Institute of Mathematics 27 Fontanka 191023, St.Petersburg Russia
Annales de l’institut Fourier (2012)
- Volume: 62, Issue: 5, page 1601-1626
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topNikolski, Nikolai. "In a shadow of the RH: Cyclic vectors of Hardy spaces on the Hilbert multidisc." Annales de l’institut Fourier 62.5 (2012): 1601-1626. <http://eudml.org/doc/251082>.
@article{Nikolski2012,
abstract = {Completeness of a dilation system $ (\varphi (nx))_\{n\ge 1\}$ on the standard Lebesgue space $ L^\{2\}(0,1)$ is considered for 2-periodic functions $ \varphi $. We show that the problem is equivalent to an open question on cyclic vectors of the Hardy space $ H^\{2\}(\mathbb\{D\}_\{2\}^\{\infty \})$ on the Hilbert multidisc $ \mathbb\{D\}_\{2\}^\{\infty \}$. Several simple sufficient conditions are exhibited, which include however practically all previously known results (Wintner; Kozlov; Neuwirth, Ginsberg, and Newman; Hedenmalm, Lindquist, and Seip). For instance, each of the following conditions implies cyclicity of a function $ f\in H^\{2\}(\mathbb\{D\}_\{2\}^\{\infty \})$: 1) $ f^\{1+\epsilon \}\in H^\{2\}(\mathbb\{D\}_\{2\}^\{\infty \})$, $ f^\{-\epsilon \}\in H^\{2\}(\mathbb\{D\}_\{2\}^\{\infty \})$; 2) $ Re(f(z))\ge 0$, $ z\in \mathbb\{D\}_\{2\}^\{\infty \}$; 3) $ f\in Hol((1+\epsilon )\mathbb\{D\}_\{2\}^\{\infty \})$ and $ f(z)\ne 0$ on $ \mathbb\{D\}_\{2\}^\{\infty \}$. The Riemann Hypothesis on zeros of the Euler $ \zeta $-function is known to be equivalent to a completeness of a similar but non-periodic dilation system (due to Nyman).},
affiliation = {Université de Bordeaux 1 UFR de Mathématiques et Informatique 351 cours de la Libération 33405 Talence France Steklov Institute of Mathematics 27 Fontanka 191023, St.Petersburg Russia},
author = {Nikolski, Nikolai},
journal = {Annales de l’institut Fourier},
keywords = {dilation semigroup; Hilbert’s multidisc; cyclic vector; outer function; completeness problem; Riemann hypothesis; cyclic vectors; Hardy spaces; Hilbert's multidisc},
language = {eng},
number = {5},
pages = {1601-1626},
publisher = {Association des Annales de l’institut Fourier},
title = {In a shadow of the RH: Cyclic vectors of Hardy spaces on the Hilbert multidisc},
url = {http://eudml.org/doc/251082},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Nikolski, Nikolai
TI - In a shadow of the RH: Cyclic vectors of Hardy spaces on the Hilbert multidisc
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 5
SP - 1601
EP - 1626
AB - Completeness of a dilation system $ (\varphi (nx))_{n\ge 1}$ on the standard Lebesgue space $ L^{2}(0,1)$ is considered for 2-periodic functions $ \varphi $. We show that the problem is equivalent to an open question on cyclic vectors of the Hardy space $ H^{2}(\mathbb{D}_{2}^{\infty })$ on the Hilbert multidisc $ \mathbb{D}_{2}^{\infty }$. Several simple sufficient conditions are exhibited, which include however practically all previously known results (Wintner; Kozlov; Neuwirth, Ginsberg, and Newman; Hedenmalm, Lindquist, and Seip). For instance, each of the following conditions implies cyclicity of a function $ f\in H^{2}(\mathbb{D}_{2}^{\infty })$: 1) $ f^{1+\epsilon }\in H^{2}(\mathbb{D}_{2}^{\infty })$, $ f^{-\epsilon }\in H^{2}(\mathbb{D}_{2}^{\infty })$; 2) $ Re(f(z))\ge 0$, $ z\in \mathbb{D}_{2}^{\infty }$; 3) $ f\in Hol((1+\epsilon )\mathbb{D}_{2}^{\infty })$ and $ f(z)\ne 0$ on $ \mathbb{D}_{2}^{\infty }$. The Riemann Hypothesis on zeros of the Euler $ \zeta $-function is known to be equivalent to a completeness of a similar but non-periodic dilation system (due to Nyman).
LA - eng
KW - dilation semigroup; Hilbert’s multidisc; cyclic vector; outer function; completeness problem; Riemann hypothesis; cyclic vectors; Hardy spaces; Hilbert's multidisc
UR - http://eudml.org/doc/251082
ER -
References
top- O. Agrawal, D. Clark, R. Douglas, Invariant subspaces in the polydisk, Pacific J. Math. 121 (1986), 1-11 Zbl0609.47012MR815027
- L. Báez-Duarte, A strengthening of the Nyman-Beurling criterion for the Riemann hypothesis, Atti Acad. Naz. Lincei 14 (2003), 5-11 Zbl1097.11041MR2057270
- L. Báez-Duarte, M. Balazard, B. Landreau, E. Saias, Notes sur la fonction de Riemann, 3, Adv. Math. 149 (2000), 130-144 Zbl1008.11032MR1742356
- B. Bagchi, On Nyman, Beurling and Baez-Duarte’s Hilbert space reformulation of the Riemann hypothesis, Proc. Indian Acad. Sci. (Math. Sci.) 116 (2006), 137-146 Zbl1125.11049MR2226127
- M. Balazard, Completeness problems and the Riemann hypothesis: an annotated bibliography, Number theory for the millenium (2002), 21-48, (M.A.Bennett et al., eds), AK Peters, Boston Zbl1044.11083MR1956217
- A. Beurling, A closure problem related to the Riemann zeta-function, Proc. Nat. Acad. USA 41 (1955), 312-314 Zbl0065.30303MR70655
- A. Beurling, On the completeness of on , Harmonic Analysis, Contemp. Mathematicians 2 (1989), 378-380, Birkhaüser, Boston MR1057614
- H. Bohr, Über die Bedeutung der Potenzreihen unendlich vieler Variabeln in der Theorie der Dirichletschen Reien , (1913, A9), Nachr. Ges. Wiss. Göttingen. Math.-Phys. Kl. Zbl44.0306.01
- B. Cole, T. Gamelin, Representing measures and Hardy spaces for the infinite polydisk algebra, Proc. London Math. Soc. (3) 53 (1986), 112-142 Zbl0624.46032MR842158
- M. Cotlar, C. Sadosky, A polydisc version of Beurling’s characterization for invariant subspaces of finite multi-codimension, Contemp. Math. 212 (1998), 51-56 Zbl0984.47003MR1486589
- R. Gelca, Topological Hilbert Nullstellensatz for Bergman spaces, Int. Equations Operator Theory 28 (1997), 191-195 Zbl0905.47004MR1451500
- J. Ginsberg, J. Neuwirth, D. Newman, Approxiamtion by , J. Funct. Anal. 5 (1970), 194-203 Zbl0189.12902MR282114
- B. Green, T. Tao, The primes contain arbitrarily long arithmetic progressions, Annals of Math. 167 (2008), 481-547 Zbl1191.11025MR2415379
- H. Hedenmalm, P. Lindquist, K. Seip, A Hilbert space of Dirichlet series and sytems of dilated functions in , Duke Math. J. 86 (1997), 1-37 Zbl0887.46008MR1427844
- H. Hedenmalm, P. Lindquist, K. Seip, Addendum to “A Hilbert space of Dirichlet series and sytems of dilated functions in ”, Duke Math. J. 99 (1999), 175-178 Zbl0953.46015MR1700745
- D. Hilbert, Wesen und Ziele einer Analysis der unendlich vielen unabhängigen Variablen, Rend. Cir. Mat. Palermo 27 (1909), 59-74 Zbl40.0391.02
- S. Krantz, H. Parks, A Primer of Real Analytic Functions, (1992), Birkhaüser, Basel Zbl0767.26001MR1182792
- S. Lojaciewicz, Sur le problème de la division, Studia Math. 18 (1959), 87-136 Zbl0115.10203MR107168
- J. Lopez, K. Ross, Sidon sets, (1975), N.Y., M.Dekker Zbl0351.43008MR440298
- V. Mandrekar, The validity of Beurling theorems in polydiscs, Proc. Amer. Math. Soc. 103 (1998), 145-148 Zbl0658.47033MR938659
- N. Nikolski, Selected problems of weighted approximation and spectral analysis, 120 (1974), Trudy Math. Inst. Steklova, Moscow (Russian) Zbl0342.41028MR467270
- B. Nyman, On the one-dimensional translation group and semi-group in certain function spaces, Thesis, Uppsala Univ. (1950) Zbl0037.35401MR36444
- A. Olofsson, On the shift semigroup on the Hardy space of Dirichlet series, (2010), Acta Math. Hungar. Zbl1230.47072MR2671009
- W. Rudin, Function theory in polydiscs, (1969), W.A.Benjamin, Inc, N.Y. - Amsterdam Zbl0177.34101MR255841
- F. Shamoyan, Weakly invertible elements in weighted anisothropic spaces of holomorphic functions in a polydisk, Mat. Sbornik 193:6 (1998), 143-160 Zbl1064.32005MR1957957
- R. Shamoyan, Haiying Li, On weakly invertible functions in the unit ball and polydisk and related problems, J. Math. Analysis 1:1 (2010), 8-19 Zbl1312.32003MR2783539
- V. Vasyunin, On a biorthogonal system related with the Riemann hypothesis, Algebra i Analyz 7 (1995), 118-135 Zbl0851.11051MR1353492
- A. Wintner, Diophantine approximation and Hilbert’s space, Amer. J. Math. 66 (1944), 564-578 Zbl0061.24902MR11497
- K Zhu, Spaces of Holomorphic Functions in the Unit Ball, (2005), Springer, New York Zbl1067.32005MR2115155
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.