A strengthening of the Nyman-Beurling criterion for the Riemann hypothesis

Luis Báez-Duarte

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (2003)

  • Volume: 14, Issue: 1, page 5-11
  • ISSN: 1120-6330

Abstract

top
According to the well-known Nyman-Beurling criterion the Riemann hypothesis is equivalent to the possibility of approximating the characteristic function of the interval 0 , 1 in mean square norm by linear combinations of the dilations of the fractional parts 1 / a x for real a greater than 1 . It was conjectured and established here that the statement remains true if the dilations are restricted to those where the a ’s are positive integers. A constructive sequence of such approximations is given.

How to cite

top

Báez-Duarte, Luis. "A strengthening of the Nyman-Beurling criterion for the Riemann hypothesis." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 14.1 (2003): 5-11. <http://eudml.org/doc/252348>.

@article{Báez2003,
abstract = {According to the well-known Nyman-Beurling criterion the Riemann hypothesis is equivalent to the possibility of approximating the characteristic function of the interval $(0,1]$ in mean square norm by linear combinations of the dilations of the fractional parts $\\{1/ax\\}$ for real $a$ greater than $1$. It was conjectured and established here that the statement remains true if the dilations are restricted to those where the $a$’s are positive integers. A constructive sequence of such approximations is given.},
author = {Báez-Duarte, Luis},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Riemann zeta function; Riemann hypothesis; Nyman-Beurling theorem},
language = {eng},
month = {3},
number = {1},
pages = {5-11},
publisher = {Accademia Nazionale dei Lincei},
title = {A strengthening of the Nyman-Beurling criterion for the Riemann hypothesis},
url = {http://eudml.org/doc/252348},
volume = {14},
year = {2003},
}

TY - JOUR
AU - Báez-Duarte, Luis
TI - A strengthening of the Nyman-Beurling criterion for the Riemann hypothesis
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 2003/3//
PB - Accademia Nazionale dei Lincei
VL - 14
IS - 1
SP - 5
EP - 11
AB - According to the well-known Nyman-Beurling criterion the Riemann hypothesis is equivalent to the possibility of approximating the characteristic function of the interval $(0,1]$ in mean square norm by linear combinations of the dilations of the fractional parts $\{1/ax\}$ for real $a$ greater than $1$. It was conjectured and established here that the statement remains true if the dilations are restricted to those where the $a$’s are positive integers. A constructive sequence of such approximations is given.
LA - eng
KW - Riemann zeta function; Riemann hypothesis; Nyman-Beurling theorem
UR - http://eudml.org/doc/252348
ER -

References

top
  1. BÁEZ-DUARTE, L., On Beurling’s Real Variable Reformulation of the Riemann Hypothesis. Adv. in Math., 101, n. 1, 1993, 10-30. Zbl0795.11035MR1239449DOI10.1006/aima.1993.1038
  2. BÁEZ-DUARTE, L., A class of invariant unitary operators. Adv. in Math., 144, n. 1, 1999, 1-12. Zbl0978.47025MR1692568DOI10.1006/aima.1998.1801
  3. BÁEZ-DUARTE, L., Arithmetical versions of the Nyman-Beurling criterion for the Riemann hypothesis. IJMMS, IJMMS/1324, 2002, to appear. Zbl1069.11037MR1926809DOI10.1155/S0161171202013248
  4. BÁEZ-DUARTE, L. - BALAZARD, M. - LANDREAU, B. - SAIAS, E., Notes sur la fonction ζ de Riemann, 3. Adv. in Math., 149, n. 1, 2000, 130-144. Zbl1008.11032MR1742356DOI10.1006/aima.1999.1861
  5. BALAZARD, M. - SAIAS, E., Notes sur la fonction ζ de Riemann, 1. Adv. in Math., 139, 1998, 310-321. Zbl0920.11062MR1654169DOI10.1006/aima.1998.1760
  6. BEURLING, A., A closure problem related to the Riemann Zeta-function. Proc. Nat. Acad. Sci., 41, 1955, 312-314. Zbl0065.30303MR70655
  7. BURNOL, J.F., A lower bound in an approximation problem involving the zeroes of the Riemann zeta function. Math., AIM01/048, 2001Adv. in Math., to appear. Zbl1029.11045MR1929303DOI10.1006/aima.2001.2066
  8. BURNOL, J.F., On an analytic estimate in the theory of the Riemann Zeta function and a theorem of Báez-Duarte. Preprint, 18 Feb. 2002, available at arXiv.org as math.NT/0202166. MR2136671
  9. CONREY, J.B. - MYERSON, G., On the Balazard-Saias criterion for the Riemann hypothesis. Posted in http://arXiv.org/abs/math.NT/002254, Feb. 2000. 
  10. VAN FRANKENHUYSEN, M., Zero-Free Regions for the Riemann Zeta-Function, density of invariant Subspaces of Functions, and the Theory of equal Distribution. Preprint, 1997. Zbl1034.11045
  11. LANDREAU, B. - RICHARD, F., Le critère de Beurling et Nyman pour l’hypothèse de Riemann: aspects numériques. Université de Bordeaux, preprint 2001, submitted to Experimental Mathematics. Zbl1117.11305MR1959747
  12. LEE, J., Convergence and the Riemann Hypothesis. Comm. Korean Math. Soc., 11, 1996, 57-62. Zbl0941.11029MR1430941
  13. NIKOLSKI, N., Distance formulae and invariant subspaces, with an application to localization of zeroes of the Riemann ζ -function. Ann. Inst. Fourier (Grenoble), 45, 1995, n. 1, 1-17. Zbl0816.30026MR1324128
  14. NYMAN, B., On some groups and semigroups of translations. Thesis, Uppsala1950. 
  15. RADEMACHER, H., Topics in Analytic Number Theory. Die Grundleheren der mathematischen Wissenschaften, Band 169, Springer-Verlag, New York1973. Zbl0253.10002MR364103
  16. TITCHMARSH, E.C., The Theory of the Riemann Zeta-Function. Clarendon Press, Oxford1951. Zbl0042.07901MR46485
  17. VASYUNIN, V.I., Sur un système biorthogonal relié a l’hypothèse de Riemann (in Russian). Algebra i Annaliz, 7, 1995, 118-135. Also appeared as: On a biorthogonal system related with the Riemann hypothesis, St. Petersburg Math. J., 7, 1996, 405-419. Zbl0851.11051MR1334152
  18. VASYUNIN, V.I., On a system of step functions, J. Math. Sci. (New York), 110, 2002, n. 5, 2930-2943; translated from the original Russian in Zapiski Nauchnyh Seminarov POMI, 262, 1999, 49-70. Zbl1005.11039MR1734327DOI10.1023/A:1015331119128

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.