LVMB manifolds and simplicial spheres
- [1] Université de Bourgogne Institut de Mathématiques de Bourgogne 9 Av. Alain Savary 21078 Dijon Cedex France
Annales de l’institut Fourier (2012)
- Volume: 62, Issue: 4, page 1289-1317
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topTambour, Jérôme. "LVMB manifolds and simplicial spheres." Annales de l’institut Fourier 62.4 (2012): 1289-1317. <http://eudml.org/doc/251094>.
@article{Tambour2012,
abstract = {LVM and LVMB manifolds are a large family of non kähler manifolds. For instance, Hopf manifolds and Calabi-Eckmann manifolds can be seen as LVMB manifolds. The LVM manifolds have a natural action of a real torus and the quotient of this action is a polytope. This quotient allows us to relate closely LVM manifolds to the moment-angle manifolds studied by Buchstaber and Panov. Our aim is to generalize the polytope associated to a LVM manifold to the LVMB case and study the properties of this generalization. In particular, we show that the object we obtain belongs to a very large class of simplicial spheres. Moreover, we show that for every sphere belonging to this class, we can construct a LVMB manifold whose associated sphere is the given sphere. We use this latter result to show that many moment-angle complexes can be endowed with a complex structure (up to product with circles).},
affiliation = {Université de Bourgogne Institut de Mathématiques de Bourgogne 9 Av. Alain Savary 21078 Dijon Cedex France},
author = {Tambour, Jérôme},
journal = {Annales de l’institut Fourier},
keywords = {non Kähler compact complex manifolds; simplicial spheres; toric varieties; complex structure on some moment-angle complexes; Lopez de Medrano-Verjovsky-Meersseman (LVM); Lopez de Medrano-Verjovsky-Meersseman-Bosio (LVMB)},
language = {eng},
number = {4},
pages = {1289-1317},
publisher = {Association des Annales de l’institut Fourier},
title = {LVMB manifolds and simplicial spheres},
url = {http://eudml.org/doc/251094},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Tambour, Jérôme
TI - LVMB manifolds and simplicial spheres
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 4
SP - 1289
EP - 1317
AB - LVM and LVMB manifolds are a large family of non kähler manifolds. For instance, Hopf manifolds and Calabi-Eckmann manifolds can be seen as LVMB manifolds. The LVM manifolds have a natural action of a real torus and the quotient of this action is a polytope. This quotient allows us to relate closely LVM manifolds to the moment-angle manifolds studied by Buchstaber and Panov. Our aim is to generalize the polytope associated to a LVM manifold to the LVMB case and study the properties of this generalization. In particular, we show that the object we obtain belongs to a very large class of simplicial spheres. Moreover, we show that for every sphere belonging to this class, we can construct a LVMB manifold whose associated sphere is the given sphere. We use this latter result to show that many moment-angle complexes can be endowed with a complex structure (up to product with circles).
LA - eng
KW - non Kähler compact complex manifolds; simplicial spheres; toric varieties; complex structure on some moment-angle complexes; Lopez de Medrano-Verjovsky-Meersseman (LVM); Lopez de Medrano-Verjovsky-Meersseman-Bosio (LVMB)
UR - http://eudml.org/doc/251094
ER -
References
top- A. Białynicki-Birula, J. B. Carrell, W. M. McGovern, Algebraic quotients. Torus actions and cohomology. The adjoint representation and the adjoint action, 131 (2002) Zbl1055.14002
- A. Białynicki-Birula, J. Święcicka, Open subsets of projective spaces with a good quotient by an action of a reductive group, Transform. Groups 1 (1996), 153-185 Zbl0912.14016MR1417709
- F. Bosio, Variétés complexes compactes: une généralisation de la construction de Meersseman et López de Medrano-Verjovsky, Ann. Inst. Fourier (Grenoble) 51 (2001), 1259-1297 Zbl0994.32018MR1860666
- F. Bosio, L. Meersseman, Real quadrics in , complex manifolds and convex polytopes, Acta Math. 197 (2006), 53-127 Zbl1157.14313MR2285318
- G.E. Bredon, Topology and geometry, 139 (1997), Springer-Verlag, New York Zbl0791.55001MR1700700
- V.M. Buchstaber, T.E. Panov, Torus actions and their applications in topology and combinatorics, 24 (2002), American Mathematical Society, Providence, RI Zbl1012.52021MR1897064
- E. Calabi, B. Eckmann, A class of compact, complex manifolds which are not algebraic, Ann. of Math. (2) 58 (1953), 494-500 Zbl0051.40304MR57539
- D. Cox, J. Little, H. Schenk, Toric Varieties, (2009), available on Cox’s website
- S. Cupit-Foutou, D. Zaffran, Non-Kähler manifolds and GIT-quotients, Math. Z. 257 (2007), 783-797 Zbl1167.53029MR2342553
- G Ewald, Combinatorial convexity and algebraic geometry, 168 (1996), Springer-Verlag Zbl0869.52001MR1418400
- H. A Hamm, Very good quotients of toric varieties, Real and complex singularities (São Carlos, 1998) 412 (2000), 61-75 Zbl0949.14031MR1715695
- H. Hopf, Zur Topologie der komplexen Mannigfaltigkeiten, Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948 (1948), 167-185, Interscience Publishers, Inc., New York Zbl0033.02501MR23054
- D. Huybrechts, Complex geometry, (2005), Springer-Verlag Zbl1055.14001MR2093043
- D.H. Lee, The structure of complex Lie groups, 429 (2002), Chapman & Hall/CRC, Boca Raton, FL Zbl0992.22005MR1887930
- S. López de Medrano, Topology of the intersection of quadrics in , Algebraic topology (Arcata, CA, 1986) 1370 (1989), 280-292, Springer, Berlin Zbl0681.57020MR1000384
- S. López de Medrano, A. Verjovsky, A new family of complex, compact, non-symplectic manifolds, Bol. Soc. Brasil. Mat. (N.S.) 28 (1997), 253-269 Zbl0901.53021MR1479504
- L. Meersseman, A new geometric construction of compact complex manifolds in any dimension, Math. Ann. 317 (2000), 79-115 Zbl0958.32013MR1760670
- L. Meersseman, A. Verjovsky, Holomorphic principal bundles over projective toric varieties, J. Reine Angew. Math. 572 (2004), 57-96 Zbl1070.14047MR2076120
- J. Mihalisin, G. Williams, Nonconvex embeddings of the exceptional simplicial 3-spheres with 8 vertices, J. Combin. Theory Ser. A 98 (2002), 74-86 Zbl1002.52012MR1897925
- P. Orlik, Seifert manifolds, 429 (2002), Chapman & Hall/CRC, Boca Raton, FL
- T. Panov, Y. Ustinovsky, Complex-analytic structures on moment-angle manifolds Zbl1257.32019
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.