Local degeneracy of pseudo-Riemannian conformal transformations
- [1] Université Paris-Sud Laboratoire de Mathématiques, 91405 ORSAY Cedex.
Annales de l’institut Fourier (2012)
- Volume: 62, Issue: 5, page 1627-1669
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topFrances, Charles. "Dégénerescence locale des transformations conformes pseudo-riemanniennes." Annales de l’institut Fourier 62.5 (2012): 1627-1669. <http://eudml.org/doc/251095>.
@article{Frances2012,
abstract = {Nous étudions l’ensemble Conf$(M,N)$ des immersions conformes entre deux variétés pseudo-riemanniennes $(M,g)$ et $(N,h)$. Nous caractérisons notamment l’adhérence de Conf$(M,N)$ dans l’espace des applications continues $\{\mathcal\{C\}\}^\{0\}(M,N)$, et décrivons quelques propriétés géométriques de $(M,g)$ lorsque cette adhérence est non triviale.},
affiliation = {Université Paris-Sud Laboratoire de Mathématiques, 91405 ORSAY Cedex.},
author = {Frances, Charles},
journal = {Annales de l’institut Fourier},
keywords = {conformal maps; pseudo-Riemannian structures},
language = {fre},
number = {5},
pages = {1627-1669},
publisher = {Association des Annales de l’institut Fourier},
title = {Dégénerescence locale des transformations conformes pseudo-riemanniennes},
url = {http://eudml.org/doc/251095},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Frances, Charles
TI - Dégénerescence locale des transformations conformes pseudo-riemanniennes
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 5
SP - 1627
EP - 1669
AB - Nous étudions l’ensemble Conf$(M,N)$ des immersions conformes entre deux variétés pseudo-riemanniennes $(M,g)$ et $(N,h)$. Nous caractérisons notamment l’adhérence de Conf$(M,N)$ dans l’espace des applications continues ${\mathcal{C}}^{0}(M,N)$, et décrivons quelques propriétés géométriques de $(M,g)$ lorsque cette adhérence est non triviale.
LA - fre
KW - conformal maps; pseudo-Riemannian structures
UR - http://eudml.org/doc/251095
ER -
References
top- D. Alekseevski, Self-similar Lorentzian manifolds, Ann. Global Anal. Geom. 3 (1985), 59-84 Zbl0538.53060MR812313
- T. Barbot, V. Charette, T. Drumm, W.M. Goldman, K. Melnick, A primer on the (2+1) Einstein universe., Recent Developments in Pseudo-Riemannian Geometry (2008), ESI Lectures in Mathematics and Physics Zbl1154.53047MR2436232
- A Besse, Einstein manifolds, 10 (1987), Springer-Verlag, Berlin Zbl1147.53001
- A. Čap, J. Slovák, V. Žádník, On distinguished curves in parabolic geometries, Transform. Groups 9 (2004), 143-166 Zbl1070.53021MR2056534
- J. Ferrand, Les géodésiques des structures conformes, C. R. Acad. Sci. Paris Sér. I Math. 294 (1982), 629-632 Zbl0487.53011MR664297
- J. Ferrand, Convergence and degeneracy of quasiconformal maps of Riemannian manifolds, J. Anal. Math. 69 (1996), 1-24 Zbl0871.53031MR1428092
- J. Ferrand, The action of conformal transformations on a Riemannian manifold, Math. Ann. 304 (1996), 277-291 Zbl0866.53027MR1371767
- C. Frances, Géométrie et dynamique lorentziennes conformes
- C. Frances, Sur le groupe d’automorphismes des géométries paraboliques de rang 1, Ann. Sci. École Norm. Sup. (4) 40 (2007), 741-764 Zbl1135.53016MR2382860
- F. W. Gehring, The Carathéodory convergence theorem for quasiconformal mappings in space, Ann. Acad. Sci. Fenn. Ser. A I No. 336/11 (1963) Zbl0136.38102MR160898
- S. Kobayashi, Transformation groups in differential geometry. Reprint of the 1972 edition., (1995), Springer-Verlag, Berlin Zbl0829.53023MR1336823
- W. Kuehnel, H.B. Rademacher, Liouville’s theorem in conformal geometry, (9) (to appear) Zbl1127.53014
- M. Obata, The conjectures on conformal transformations of Riemannian manifolds, J. Differential Geometry 6 (1971/72), 247-258 Zbl0236.53042MR303464
- R. Schoen, On the conformal and CR automorphism groups, Geom. Funct. Anal. 5 (1995), 464-481 Zbl0835.53015MR1334876
- M. Schottenloher, A Mathematical Introduction to Conformal Field Theory, (1997), Springer-Verlag, Berlin Zbl0874.17031MR1473464
- R.W. Sharpe, Differential Geometry : Cartan’s generalization of Klein’s Erlangen Program, (1997), Springer, New York Zbl0876.53001MR1453120
- J. Vässälä, Lectures on -dimensional quasiconformal mappings, 229 (1971), Springer-Verlag, Berlin-New York MR454009
- A. Zeghib, Sur les actions affines des groupes discrets, Ann. Inst. Fourier 47 (1997), 641-685 Zbl0865.57038MR1450429
- A. Zeghib, Isometry groups and geodesic foliations of Lorentz manifolds. I. Foundations of Lorentz dynamics, Geom. Funct. Anal. 9 (1999), 775-822 Zbl0946.53035MR1719606
- A. Zeghib, Isometry groups and geodesic foliationsof Lorentz manifolds. II. Geometry of analytic Lorentz manifolds with large isometry groups, Geom. Funct. Anal. 9 (1999), 823-854 Zbl0946.53036MR1719610
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.