Sur le groupe d'automorphismes des géométries paraboliques de rang 1

Charles Frances

Annales scientifiques de l'École Normale Supérieure (2007)

  • Volume: 40, Issue: 5, page 741-764
  • ISSN: 0012-9593

How to cite

top

Frances, Charles. "Sur le groupe d'automorphismes des géométries paraboliques de rang 1." Annales scientifiques de l'École Normale Supérieure 40.5 (2007): 741-764. <http://eudml.org/doc/82725>.

@article{Frances2007,
author = {Frances, Charles},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {conformal group; strictly pseudo-convex CR structure; Cartan geometry},
language = {fre},
number = {5},
pages = {741-764},
publisher = {Elsevier},
title = {Sur le groupe d'automorphismes des géométries paraboliques de rang 1},
url = {http://eudml.org/doc/82725},
volume = {40},
year = {2007},
}

TY - JOUR
AU - Frances, Charles
TI - Sur le groupe d'automorphismes des géométries paraboliques de rang 1
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2007
PB - Elsevier
VL - 40
IS - 5
SP - 741
EP - 764
LA - fre
KW - conformal group; strictly pseudo-convex CR structure; Cartan geometry
UR - http://eudml.org/doc/82725
ER -

References

top
  1. [1] Biquard O., Métriques d'Einstein asymptotiquement symétriques, Astérisque265 (2000). Zbl0967.53030
  2. [2] Čap A., Two constructions with parabolic geometries, Rend. Circ. Mat. Palermo (2) Suppl.79 (2006) 11-37. Zbl1120.53013MR2287124
  3. [3] Čap A., Schichl K., Parabolic geometries and canonical Cartan connections, Hokkaido Math. J.29 (3) (2000) 453-505. Zbl0996.53023MR1795487
  4. [4] Cartan É., Les espaces généralisés, Notice sur les travaux scientifiques. Oeuvres Complètes, Partie I, vol. I, 1952, pp. 72–85. 
  5. [5] Cartan É., Sur la géométrie pseudo-conforme des hypersurfaces de deux variables complexes I, Ann. Math. Pures Appl.11 (4) (1932) 17-90. Zbl0005.37304
  6. [6] Cartan É., Sur la géométrie pseudo-conforme des hypersurfaces de deux variables complexes II, Ann. Scuola Norm. Sup. Pisa1 (2) (1932) 333-354. Zbl0005.37401MR1556687
  7. [7] Chern S.S., Moser J., Real hypersurfaces in complex manifolds, Acta Math.133 (1974) 219-271. Zbl0302.32015MR425155
  8. [8] Ferrand J., Transformations conformes et quasi-conformes des variétés riemanniennes compactes, Mémoires Académie Royale de Belgique. Classe des Sciences39 (5) (1971) 1-44. Zbl0215.50902MR322739
  9. [9] Ferrand J., The action of conformal transformations on a Riemannian manifold, Math. Ann.304 (2) (1996) 277-291. Zbl0866.53027MR1371767
  10. [10] Frances C., Un théorème de rigidité pour certains plongements de géométries de Cartan, en préparation. 
  11. [11] Frances C., Sur les variétés lorentziennes dont le groupe conforme est essentiel, Math. Ann.332 (1) (2005) 103-119. Zbl1085.53061MR2139253
  12. [12] Frances C., Tarquini C., Autour du théorème de Ferrand–Obata, Ann. Global Anal. Geom.21 (1) (2002) 51-62. Zbl1005.53011
  13. [13] Goldman W.M., Complex Hyperbolic Geometry, Oxford Mathematical Monographs. Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1999. Zbl0939.32024MR1695450
  14. [14] Kamada H., Nayatani S., Quaternionic analogue of CR geometry, Séminaire de Théorie Spectrale et Géométrie de Grenoble19 (2001) 41-52. Zbl1044.53032MR1909075
  15. [15] Knapp A.W., Lie Groups Beyond an Introduction, Progress in Mathematics, vol. 140, second ed., Birkhäuser, Boston, 2002. Zbl0862.22006MR1920389
  16. [16] Kobayashi S., Transformation Groups in Differential Geometry, Springer-Verlag, 1972. Zbl0246.53031MR355886
  17. [17] Kuiper N., On conformally flat spaces in the large, Ann. of Math.50 (1949) 916-924. Zbl0041.09303MR31310
  18. [18] Lafontaine J., The theorem of Lelong–Ferrand and Obata, in: Conformal Geometry, Bonn, 1985/1986, Aspects Math., vol. E12, Vieweg, Braunschweig, 1988, pp. 93-103. Zbl0668.53022
  19. [19] Lichnerowicz A., Sur les transformations conformes d'une variété riemannienne compacte, C. R. Acad. Sci. Paris259 (1964) 697-700. Zbl0126.37803MR166734
  20. [20] Morimoto T., Geometric structures on filtered manifolds, Hokkaido Math. J.22 (1993) 263-347. Zbl0801.53019MR1245130
  21. [21] Obata M., The conjectures on conformal transformations of Riemannian manifolds, J. Differential Geometry6 (1971/72) 247-258. Zbl0236.53042MR303464
  22. [22] Schmidt B., A new definition of conformal and projective infinity of space–times, Comm. Math. Phys.36 (1) (1974) 73-90. Zbl0282.53042
  23. [23] Schoen R., On the conformal and CR automorphism groups, Geom. Funct. Anal.5 (2) (1995) 464-481. Zbl0835.53015MR1334876
  24. [24] Sharpe R.W., Differential Geometry. Cartan's generalization of Klein's Erlangen program, Graduate Texts in Mathematics, vol. 166, Springer-Verlag, New York, 2000. Zbl0876.53001MR1453120
  25. [25] Sternberg S., Lectures on Differential Geometry, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1964. Zbl0129.13102MR193578
  26. [26] Tanaka N., On non-degenerate real hypersurfaces, graded Lie algebras, and Cartan connections, Japan J. Math.2 (1976) 131-190. Zbl0346.32010MR589931
  27. [27] Tanaka N., On the equivalence problem associated with simple graded Lie algebras, Hokkaido Math. J.8 (1979) 23-84. Zbl0409.17013MR533089
  28. [28] Thurston W., Three Dimensional Geometry and Topology. Vol. 1, Princeton University Press, 1997, Edited by Silvio Levy. Zbl0873.57001MR1435975
  29. [29] Webster S.M., On the transformation group of a real hypersurface, Trans. Amer. Math. Soc.231 (1977) 179-190. Zbl0368.57013MR481085

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.