Flowability of plane homeomorphisms

Frédéric Le Roux[1]; Anthony G. O’Farrell[2]; Maria Roginskaya[3]; Ian Short[4]

  • [1] Université Paris Sud, Laboratoire de mathématiques, Bat. 425, 91405 Orsay Cedex, France
  • [2] National Univeristy of Ireland Maynooth, Department of Mathematics, Logic House, Maynooth, County Kildare, Ireland
  • [3] Chalmers University of Technology, Department of Mathematics, S-412 96 Gőteborg, Sweden
  • [4] The Open University, Department of Mathematics and Statistics, Milton Keynes, MK7 6AA, United Kingdom

Annales de l’institut Fourier (2012)

  • Volume: 62, Issue: 2, page 619-639
  • ISSN: 0373-0956

Abstract

top
We describe necessary and sufficient conditions for a fixed point free planar homeomorphism that preserves the standard Reeb foliation to embed in a planar flow that leaves the foliation invariant.

How to cite

top

Le Roux, Frédéric, et al. "Flowability of plane homeomorphisms." Annales de l’institut Fourier 62.2 (2012): 619-639. <http://eudml.org/doc/251097>.

@article{LeRoux2012,
abstract = {We describe necessary and sufficient conditions for a fixed point free planar homeomorphism that preserves the standard Reeb foliation to embed in a planar flow that leaves the foliation invariant.},
affiliation = {Université Paris Sud, Laboratoire de mathématiques, Bat. 425, 91405 Orsay Cedex, France; National Univeristy of Ireland Maynooth, Department of Mathematics, Logic House, Maynooth, County Kildare, Ireland; Chalmers University of Technology, Department of Mathematics, S-412 96 Gőteborg, Sweden; The Open University, Department of Mathematics and Statistics, Milton Keynes, MK7 6AA, United Kingdom},
author = {Le Roux, Frédéric, O’Farrell, Anthony G., Roginskaya, Maria, Short, Ian},
journal = {Annales de l’institut Fourier},
keywords = {Brouwer homeomorphism; flow; foliation; homeomorphism; plane; Reeb component},
language = {eng},
number = {2},
pages = {619-639},
publisher = {Association des Annales de l’institut Fourier},
title = {Flowability of plane homeomorphisms},
url = {http://eudml.org/doc/251097},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Le Roux, Frédéric
AU - O’Farrell, Anthony G.
AU - Roginskaya, Maria
AU - Short, Ian
TI - Flowability of plane homeomorphisms
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 2
SP - 619
EP - 639
AB - We describe necessary and sufficient conditions for a fixed point free planar homeomorphism that preserves the standard Reeb foliation to embed in a planar flow that leaves the foliation invariant.
LA - eng
KW - Brouwer homeomorphism; flow; foliation; homeomorphism; plane; Reeb component
UR - http://eudml.org/doc/251097
ER -

References

top
  1. S.A. Andrea, On homeomorphisms of the plane, and their embedding in flows, Bull. Amer. Math. Soc. 71 (1965), 381-383 Zbl0125.40001MR172258
  2. F. Béguin, F. Le Roux, Ensemble oscillant d’un homéomorphisme de Brouwer, homéomorphismes de Reeb, Bull. Soc. Math. France 131 (2003), 149-210 Zbl1026.37033MR1988946
  3. C. Godbillon, Fibrés en droites et feuilletages du plan, Enseignement Math. (2) 18 (1972), 213-224 Zbl0252.57007MR336755
  4. A. Haefliger, G. Reeb, Variétés (non séparées) à une dimension et structures feuilletés du plan, Enseignement Math. (2) 3 (1957), 107-125 Zbl0079.17101MR89412
  5. G.D. Jones, The embedding of homeomorphisms of the plane in continuous flows., Pacific J. Math. 41 (1972), 421-436 Zbl0218.54036MR305382
  6. G.D. Jones, On the problem of embedding discrete flows in continuous flows, Dynamical systems II, Proc. int. Symp., Gainesville/Fla. (1982), 565-568 Zbl0549.58030
  7. R.L. Kruse, J.J. Deely, Joint continuity of monotonic functions, Amer. Math. Monthly 76 (1969), 74-76 Zbl0172.33304MR1535243
  8. F. Le Roux, Classes de conjugaison des flots du plan topologiquement équivalents au flot de Reeb, C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), 45-50 Zbl0922.58069MR1674425
  9. W.R. Utz, The embedding of homeomorphisms in continuous flows, Topology Proc. 6 (1981), 159-177 Zbl0491.54035MR650486

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.