Mean-periodicity and zeta functions

Ivan Fesenko[1]; Guillaume Ricotta[2]; Masatoshi Suzuki[3]

  • [1] University of Nottingham School of Math Sciences University Park Nottingham NG7 2RD (England)
  • [2] Université Bordeaux 1 Institut de Mathématiques de Bordeaux 351, cours de la Liberation 33405 Talence cedex (France) ETH Zürich Forschungsinstitut für Mathematik HG J 16.2 Rämistrasse 101 8092 Zürich (Switzerland )
  • [3] The University of Tokyo Graduate School of Mathematical Sciences 3-8-1 Komaba Meguro-ku Tokyo 153-8914 Japan)

Annales de l’institut Fourier (2012)

  • Volume: 62, Issue: 5, page 1819-1887
  • ISSN: 0373-0956

Abstract

top
This paper establishes new bridges between zeta functions in number theory and modern harmonic analysis, namely between the class of complex functions, which contains the zeta functions of arithmetic schemes and closed with respect to product and quotient, and the class of mean-periodic functions in several spaces of functions on the real line. In particular, the meromorphic continuation and functional equation of the zeta function of an arithmetic scheme with its expected analytic shape is shown to correspond to mean-periodicity of a certain explicitly defined function associated to the zeta function. The case of elliptic curves over number fields and their regular models is treated in more details, and many other examples are included as well.

How to cite

top

Fesenko, Ivan, Ricotta, Guillaume, and Suzuki, Masatoshi. "Mean-periodicity and zeta functions." Annales de l’institut Fourier 62.5 (2012): 1819-1887. <http://eudml.org/doc/251099>.

@article{Fesenko2012,
abstract = {This paper establishes new bridges between zeta functions in number theory and modern harmonic analysis, namely between the class of complex functions, which contains the zeta functions of arithmetic schemes and closed with respect to product and quotient, and the class of mean-periodic functions in several spaces of functions on the real line. In particular, the meromorphic continuation and functional equation of the zeta function of an arithmetic scheme with its expected analytic shape is shown to correspond to mean-periodicity of a certain explicitly defined function associated to the zeta function. The case of elliptic curves over number fields and their regular models is treated in more details, and many other examples are included as well.},
affiliation = {University of Nottingham School of Math Sciences University Park Nottingham NG7 2RD (England); Université Bordeaux 1 Institut de Mathématiques de Bordeaux 351, cours de la Liberation 33405 Talence cedex (France) ETH Zürich Forschungsinstitut für Mathematik HG J 16.2 Rämistrasse 101 8092 Zürich (Switzerland ); The University of Tokyo Graduate School of Mathematical Sciences 3-8-1 Komaba Meguro-ku Tokyo 153-8914 Japan)},
author = {Fesenko, Ivan, Ricotta, Guillaume, Suzuki, Masatoshi},
journal = {Annales de l’institut Fourier},
keywords = {Zeta functions of elliptic curves over number fields; zeta functions of arithmetic schemes; mean-periodicity; boundary terms of zeta integrals; higher adelic analysis and geometry; Hasse-Weil -functions of curves over global fields; zeta functions of elliptic curves over number fields; higher adelic analysis},
language = {eng},
number = {5},
pages = {1819-1887},
publisher = {Association des Annales de l’institut Fourier},
title = {Mean-periodicity and zeta functions},
url = {http://eudml.org/doc/251099},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Fesenko, Ivan
AU - Ricotta, Guillaume
AU - Suzuki, Masatoshi
TI - Mean-periodicity and zeta functions
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 5
SP - 1819
EP - 1887
AB - This paper establishes new bridges between zeta functions in number theory and modern harmonic analysis, namely between the class of complex functions, which contains the zeta functions of arithmetic schemes and closed with respect to product and quotient, and the class of mean-periodic functions in several spaces of functions on the real line. In particular, the meromorphic continuation and functional equation of the zeta function of an arithmetic scheme with its expected analytic shape is shown to correspond to mean-periodicity of a certain explicitly defined function associated to the zeta function. The case of elliptic curves over number fields and their regular models is treated in more details, and many other examples are included as well.
LA - eng
KW - Zeta functions of elliptic curves over number fields; zeta functions of arithmetic schemes; mean-periodicity; boundary terms of zeta integrals; higher adelic analysis and geometry; Hasse-Weil -functions of curves over global fields; zeta functions of elliptic curves over number fields; higher adelic analysis
UR - http://eudml.org/doc/251099
ER -

References

top
  1. Carlos A. Berenstein, Roger Gay, Complex analysis and special topics in harmonic analysis, (1995), Springer-Verlag, New York Zbl0837.30001MR1344448
  2. Carlos A. Berenstein, Daniele C. Struppa, Dirichlet series and convolution equations, Publ. Res. Inst. Math. Sci. 24 (1988), 783-810 Zbl0668.30005MR985279
  3. Carlos A. Berenstein, B. A. Taylor, Mean-periodic functions, Internat. J. Math. Math. Sci. 3 (1980), 199-235 Zbl0438.42012MR570178
  4. Spencer Bloch, De Rham cohomology and conductors of curves, Duke Math. J. 54 (1987), 295-308 Zbl0632.14018MR899399
  5. Pierre Cartier, Mathemagics (a tribute to L. Euler and R. Feynman), Noise, oscillators and algebraic randomness (Chapelle des Bois, 1999) 550 (2000), 6-67, Springer, Berlin Zbl1112.81300MR1814857
  6. Sarvadaman Chowla, Atle Selberg, On Epstein’s zeta function. I, Proc. Nat. Acad. Sci. U. S. A. 35 (1949), 371-374 Zbl0032.39103MR30997
  7. Alain Connes, Trace formula in noncommutative geometry and the zeros of the Riemann zeta function, Selecta Math. (N.S.) (1999), 29-106 Zbl0945.11015MR1694895
  8. J. Brian Conrey, The Riemann hypothesis, Notices Amer. Math. Soc. 50 (2003), 341-353 Zbl1160.11341MR1954010
  9. Harold Davenport, Hans A. Heilbronn, On the zeros of certain Dirichlet series I, J. London Math. Soc. (1936), 181-185 Zbl0014.21601MR1574345
  10. Harold Davenport, Hans A. Heilbronn, On the zeros of certain Dirichlet series II, J. London Math. Soc. (1936), 307-312 Zbl0015.19802
  11. Jean Delsarte, Les fonctions moyennes-périodiques, Journal de Math. Pures et Appl. 14 (1935), 403-453 Zbl0013.25405
  12. Ivan Fesenko, Analysis on arithmetic schemes. I, Doc. Math. (2003), 261-284 Zbl1130.11335MR2046602
  13. Ivan Fesenko, Adelic approach to the zeta function of arithmetic schemes in dimension two, Mosc. Math. J. 8 (2008), 273-317, 399–400 Zbl1158.14023MR2462437
  14. Ivan Fesenko, Analysis on arithmetic schemes. II, J. K-Theory 5 (2010), 437-557 Zbl1225.14019MR2658047
  15. Several complex variables. V, 54 (1993), GamkrelidzeR.V.R., Berlin MR1326616
  16. John E. Gilbert, On the ideal structure of some algebras of analytic functions, Pacific J. Math. 35 (1970), 625-634 Zbl0232.46053MR412439
  17. Steven M. Gonek, On negative moments of the Riemann zeta-function, Mathematika 36 (1989), 71-88 Zbl0673.10032MR1014202
  18. Dennis A. Hejhal, The Selberg trace formula for PSL ( 2 , R ) . Vol. I, (1976), Springer-Verlag, Berlin Zbl0543.10020MR439755
  19. Dennis A. Hejhal, On the distribution of log | ζ ( 1 2 + i t ) | , Number theory, trace formulas and discrete groups (Oslo, 1987) (1989), 343-370, Academic Press, Boston, MA Zbl0665.10027MR993326
  20. Henryk Iwaniec, Emmanuel Kowalski, Analytic number theory, 53 (2004), American Mathematical Society, Providence, RI Zbl1059.11001MR2061214
  21. Jean-Pierre Kahane, Lectures on mean periodic functions, (1959), Tata Inst. Fundamental Res., Bombay Zbl0099.32301
  22. Emmanuel Kowalski, The large sieve, monodromy, and zeta functions of algebraic curves. II. Independence of the zeros, Int. Math. Res. Not. IMRN (2008) Zbl1233.14018MR2439552
  23. Nobushige Kurokawa, Gamma factors and Plancherel measures, Proc. Japan Acad. Ser. A Math. Sci. 68 (1992), 256-260 Zbl0797.11053MR1202627
  24. Peter D. Lax, Translation invariant spaces, Acta Math. 101 (1959), 163-178 Zbl0085.09102MR105620
  25. Boris Ya. Levin, Lectures on entire functions, 150 (1996), American Mathematical Society, Providence, RI Zbl0856.30001MR1400006
  26. Qing Liu, Algebraic geometry and arithmetic curves, 6 (2006), Oxford University Press, Oxford Zbl1103.14001MR1917232
  27. Ralf Meyer, A spectral interpretation for the zeros of the Riemann zeta function, Mathematisches Institut, Georg-August-Universität Göttingen: Seminars Winter Term 2004/2005 (2005), 117-137, Universitätsdrucke Göttingen, Göttingen Zbl1101.11031MR2206883
  28. Yves Meyer, Algebraic numbers and harmonic analysis, (1972), North-Holland Publishing Co., Amsterdam Zbl0267.43001MR485769
  29. Philippe Michel, Analytic number theory and families of automorphic L -functions, Automorphic forms and applications 12 (2007), 181-295, Amer. Math. Soc., Providence, RI Zbl1168.11016MR2331346
  30. Nikolai K. Nikolʼskiĭ, Invariant subspaces in the theory of operators and theory of functions, Journal of Mathematical Sciences 5 (1976), 129-249 Zbl0348.47004
  31. Nikolai K. Nikolʼskiĭ, Elementary description of the methods of localizing ideals, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 170 (1989), 207-232, 324–325 Zbl0722.46012MR1039581
  32. George Pólya, Gabor Szegő, Problems and theorems in analysis. I, (1998), Springer-Verlag, Berlin Zbl1053.00002MR1492447
  33. Peter Roquette, Class field theory in characteristic p , its origin and development, Class field theory—its centenary and prospect (Tokyo, 1998) 30 (2001), 549-631, Math. Soc. Japan, Tokyo Zbl1068.11073MR1846477
  34. Michael Rubinstein, Peter Sarnak, Chebyshev’s bias, Experiment. Math. 3 (1994), 173-197 Zbl0823.11050MR1329368
  35. Laurent Schwartz, Théorie générale des fonctions moyenne-périodiques, Ann. of Math. (2) 48 (1947), 857-929 Zbl0030.15004MR23948
  36. Atle Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. (N.S.) 20 (1956), 47-87 Zbl0072.08201MR88511
  37. Jean-Pierre Serre, Zeta and L functions, Arithmetical Algebraic Geometry (Proc. Conf. Purdue Univ., 1963) (1965), 82-92, Harper & Row, New York Zbl0171.19602MR194396
  38. Jean-Pierre Serre, Facteurs locaux des fonctions zêta des variétés algébriques (définitions et conjectures), Œuvres. Vol. II, (1986), Springer-Verlag, Berlin Zbl0221.14015
  39. C. Soulé, On zeroes of automorphic L -functions, Dynamical, spectral, and arithmetic zeta functions (San Antonio, TX, 1999) 290 (2001), 167-179, Amer. Math. Soc., Providence, RI Zbl1094.11030MR1868475
  40. Harold M. Stark, On the zeros of Epstein’s zeta function, Mathematika 14 (1967), 47-55 Zbl0242.12010MR215798
  41. Masatoshi Suzuki, Two dimensional adelic analysis and cuspidal automorphic representations of G L ( 2 )  Zbl1277.11074
  42. Masatoshi Suzuki, Positivity of certain functions associated with analysis on elliptic surface, J. Number Theory 131 (2011), 1770-1796 Zbl1237.11028MR2811546
  43. John T. Tate, Fourier analysis in number fields, and Hecke’s zeta-functions, Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965) (1967), 305-347, Thompson, Washington, D.C. MR217026
  44. Edward C. Titchmarsh, The theory of the Riemann zeta-function, (1986), The Clarendon Press Oxford University Press, New York Zbl0601.10026MR882550
  45. David Vernon Widder, The Laplace Transform, (1941), Princeton University Press, Princeton, N. J. Zbl0063.08245MR5923
  46. Andrew Wiles, Modular elliptic curves and Fermat’s last theorem, Ann. of Math. (2) 141 (1995), 443-551 Zbl0823.11029MR1333035
  47. Don Zagier, Eisenstein series and the Riemann zeta function, Automorphic forms, representation theory and arithmetic (Bombay, 1979) 10 (1981), 275-301, Tata Inst. Fundamental Res., Bombay Zbl0484.10019MR633666

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.