Connected abelian complex Lie groups and number fields
- [1] University of California, San Diego 9500 Gilman Drive # 0112 La Jolla, CA 92093-0112 USA Current address : Fakultät für Mathematik Institut für theoritische Informatik und Mathematik Universität der Bundeswehr Münschen 85577 Neubiberg Deutschland
Journal de Théorie des Nombres de Bordeaux (2012)
- Volume: 24, Issue: 1, page 201-229
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topVallières, Daniel. "Connected abelian complex Lie groups and number fields." Journal de Théorie des Nombres de Bordeaux 24.1 (2012): 201-229. <http://eudml.org/doc/251102>.
@article{Vallières2012,
abstract = {In this note we explain a way to associate to any number field some connected complex abelian Lie groups. Further, we study the case of non-totally real cubic number fields, and we see that they are intimately related with the Cousin groups (toroidal groups) of complex dimension $2$ and rank $3$.},
affiliation = {University of California, San Diego 9500 Gilman Drive # 0112 La Jolla, CA 92093-0112 USA Current address : Fakultät für Mathematik Institut für theoritische Informatik und Mathematik Universität der Bundeswehr Münschen 85577 Neubiberg Deutschland},
author = {Vallières, Daniel},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
month = {3},
number = {1},
pages = {201-229},
publisher = {Société Arithmétique de Bordeaux},
title = {Connected abelian complex Lie groups and number fields},
url = {http://eudml.org/doc/251102},
volume = {24},
year = {2012},
}
TY - JOUR
AU - Vallières, Daniel
TI - Connected abelian complex Lie groups and number fields
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2012/3//
PB - Société Arithmétique de Bordeaux
VL - 24
IS - 1
SP - 201
EP - 229
AB - In this note we explain a way to associate to any number field some connected complex abelian Lie groups. Further, we study the case of non-totally real cubic number fields, and we see that they are intimately related with the Cousin groups (toroidal groups) of complex dimension $2$ and rank $3$.
LA - eng
UR - http://eudml.org/doc/251102
ER -
References
top- F. Capocasa and F. Catanese, Periodic meromorphic functions. Acta Math. 166 (1991), 1-2, 27–68. Zbl0719.32005MR1088982
- P. Cousin, Sur les fonctions triplement périodiques de deux variables. Acta. Math. 33 (1910), 1, 105–232. Zbl41.0492.02MR1555058
- F. Gherardelli, Varieta’ quasi abeliane a moltiplicazione complessa. Rend. Sem. Mat. Fis. Milano. 57 (1989), 8, 31–36. Zbl0704.14033MR1017917
- P. de la Harpe, Introduction to complex tori. Complex analysis and its applications (Lectures, Internat. Sem., Trieste, 1975), Vol. II, pp. 101–144. Internat. Atomic Energy Agency, Vienna, 1976. Zbl0343.14016MR480541
- A. Morimoto, On the classification of noncompact complex abelian Lie groups. Trans. Amer. Math. Soc. 123 (1966), 220–228. Zbl0144.07903MR207893
- G. Shimura, Introduction to the arithmetic theory of automorphic functions. Princeton University Press, 1994. Zbl0872.11023MR1291394
- G. Shimura and Y. Taniyama, Complex multiplication of abelian varieties and its applications to number theory. The Mathematical Society of Japan, 1961. Zbl0112.03502MR125113
- G. Shimura, Abelian varieties with complex multiplication and modular functions. Princeton University Press, 1998. Zbl0908.11023MR1492449
- C. L. Siegel, Topics in complex function theory I, II, III. Wiley-Interscience, 1969. Zbl0211.10501
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.