Connected abelian complex Lie groups and number fields

Daniel Vallières[1]

  • [1] University of California, San Diego 9500 Gilman Drive # 0112 La Jolla, CA 92093-0112 USA Current address : Fakultät für Mathematik Institut für theoritische Informatik und Mathematik Universität der Bundeswehr Münschen 85577 Neubiberg Deutschland

Journal de Théorie des Nombres de Bordeaux (2012)

  • Volume: 24, Issue: 1, page 201-229
  • ISSN: 1246-7405

Abstract

top
In this note we explain a way to associate to any number field some connected complex abelian Lie groups. Further, we study the case of non-totally real cubic number fields, and we see that they are intimately related with the Cousin groups (toroidal groups) of complex dimension 2 and rank 3 .

How to cite

top

Vallières, Daniel. "Connected abelian complex Lie groups and number fields." Journal de Théorie des Nombres de Bordeaux 24.1 (2012): 201-229. <http://eudml.org/doc/251102>.

@article{Vallières2012,
abstract = {In this note we explain a way to associate to any number field some connected complex abelian Lie groups. Further, we study the case of non-totally real cubic number fields, and we see that they are intimately related with the Cousin groups (toroidal groups) of complex dimension $2$ and rank $3$.},
affiliation = {University of California, San Diego 9500 Gilman Drive # 0112 La Jolla, CA 92093-0112 USA Current address : Fakultät für Mathematik Institut für theoritische Informatik und Mathematik Universität der Bundeswehr Münschen 85577 Neubiberg Deutschland},
author = {Vallières, Daniel},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
month = {3},
number = {1},
pages = {201-229},
publisher = {Société Arithmétique de Bordeaux},
title = {Connected abelian complex Lie groups and number fields},
url = {http://eudml.org/doc/251102},
volume = {24},
year = {2012},
}

TY - JOUR
AU - Vallières, Daniel
TI - Connected abelian complex Lie groups and number fields
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2012/3//
PB - Société Arithmétique de Bordeaux
VL - 24
IS - 1
SP - 201
EP - 229
AB - In this note we explain a way to associate to any number field some connected complex abelian Lie groups. Further, we study the case of non-totally real cubic number fields, and we see that they are intimately related with the Cousin groups (toroidal groups) of complex dimension $2$ and rank $3$.
LA - eng
UR - http://eudml.org/doc/251102
ER -

References

top
  1. F. Capocasa and F. Catanese, Periodic meromorphic functions. Acta Math. 166 (1991), 1-2, 27–68. Zbl0719.32005MR1088982
  2. P. Cousin, Sur les fonctions triplement périodiques de deux variables. Acta. Math. 33 (1910), 1, 105–232. Zbl41.0492.02MR1555058
  3. F. Gherardelli, Varieta’ quasi abeliane a moltiplicazione complessa. Rend. Sem. Mat. Fis. Milano. 57 (1989), 8, 31–36. Zbl0704.14033MR1017917
  4. P. de la Harpe, Introduction to complex tori. Complex analysis and its applications (Lectures, Internat. Sem., Trieste, 1975), Vol. II, pp. 101–144. Internat. Atomic Energy Agency, Vienna, 1976. Zbl0343.14016MR480541
  5. A. Morimoto, On the classification of noncompact complex abelian Lie groups. Trans. Amer. Math. Soc. 123 (1966), 220–228. Zbl0144.07903MR207893
  6. G. Shimura, Introduction to the arithmetic theory of automorphic functions. Princeton University Press, 1994. Zbl0872.11023MR1291394
  7. G. Shimura and Y. Taniyama, Complex multiplication of abelian varieties and its applications to number theory. The Mathematical Society of Japan, 1961. Zbl0112.03502MR125113
  8. G. Shimura, Abelian varieties with complex multiplication and modular functions. Princeton University Press, 1998. Zbl0908.11023MR1492449
  9. C. L. Siegel, Topics in complex function theory I, II, III. Wiley-Interscience, 1969. Zbl0211.10501

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.