Binomial squares in pure cubic number fields
- [1] Mörikeweg 1 73489 Jagstzell Germany
Journal de Théorie des Nombres de Bordeaux (2012)
- Volume: 24, Issue: 3, page 691-704
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topLemmermeyer, Franz. "Binomial squares in pure cubic number fields." Journal de Théorie des Nombres de Bordeaux 24.3 (2012): 691-704. <http://eudml.org/doc/251103>.
@article{Lemmermeyer2012,
abstract = {Let $K = \mathbb\{Q\}(\omega )$, with $\omega ^3 = m$ a positive integer, be a pure cubic number field. We show that the elements $\alpha \in K^\times $ whose squares have the form $a - \omega $ for rational numbers $a$ form a group isomorphic to the group of rational points on the elliptic curve $E_m: y^2 = x^3 - m$. This result will allow us to construct unramified quadratic extensions of pure cubic number fields $K$.},
affiliation = {Mörikeweg 1 73489 Jagstzell Germany},
author = {Lemmermeyer, Franz},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {binomial squares; pure cubic number fields; elliptic curves; unramified quadratic extension of pure cubic number fields},
language = {eng},
month = {11},
number = {3},
pages = {691-704},
publisher = {Société Arithmétique de Bordeaux},
title = {Binomial squares in pure cubic number fields},
url = {http://eudml.org/doc/251103},
volume = {24},
year = {2012},
}
TY - JOUR
AU - Lemmermeyer, Franz
TI - Binomial squares in pure cubic number fields
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2012/11//
PB - Société Arithmétique de Bordeaux
VL - 24
IS - 3
SP - 691
EP - 704
AB - Let $K = \mathbb{Q}(\omega )$, with $\omega ^3 = m$ a positive integer, be a pure cubic number field. We show that the elements $\alpha \in K^\times $ whose squares have the form $a - \omega $ for rational numbers $a$ form a group isomorphic to the group of rational points on the elliptic curve $E_m: y^2 = x^3 - m$. This result will allow us to construct unramified quadratic extensions of pure cubic number fields $K$.
LA - eng
KW - binomial squares; pure cubic number fields; elliptic curves; unramified quadratic extension of pure cubic number fields
UR - http://eudml.org/doc/251103
ER -
References
top- P. Barrucand, H. Cohn, A rational genus, class number divisibility, and unit theory for pure cubic fields. J. Number Theory 2 (1970), 7–21. Zbl0192.40001MR249398
- M. Bhargava, A. Shankar, Binary quartic forms having bounded invariants, and the boundedness of the average rank of elliptic curves. ArXiv:1006.1002v2. Zbl1307.11071
- G. Billing, Beiträge zur arithmetischen Theorie der ebenen kubischen Kurven vom Geschlecht Eins. Nova Acta Reg. Soc. Ups. (IV) 11 (1938). Zbl0018.05401
- H. Cohen, J. Martinet, Heuristics on class groups: some good primes are not too good. Math. Comp. 63 (1994), no. 207, 329–334. Zbl0827.11067MR1226813
- H. Cohn, A classical invitation to algebraic numbers and class fields. Springer-Verlag, 1978. Zbl0395.12001MR506156
- H. Eisenbeis, G. Frey, B. Ommerborn, Computation of the 2-rank of pure cubic fields. Math. Comp. 32 (1978), 559–569. Zbl0385.12001MR480416
- L. Euler, Vollständige Anleitung zur Algebra (E387, E388). St. Petersburg, 1770.
- T. Honda, Pure cubic fields whose class numbers are multiples of three. J. Number Theory 3 (1971), 7–12. Zbl0222.12004MR292795
- D. Husemöller, Elliptic Curves. 2nd ed., Springer-Verlag, 2004. Zbl0605.14032MR2024529
- J.-L. Lagrange, Sur la solution des problèmes indéterminés du second degré. Mem. Acad. Sci. Berlin, 1769.
- J.-L. Lagrange, Additions à l’analyse indéterminée. Lyon, 1774.
- F. Lemmermeyer, A note on Pépin’s counter examples to the Hasse principle for curves of genus . Abh. Math. Sem. Hamburg 69 (1999), 335–345. Zbl0949.11019MR1722943
- F. Lemmermeyer, Why is the class number of even? Math. Bohemica, to appear. Zbl1274.11162
- T. Nagell, Solution complète de quelques équations cubiques à deux indéterminées. J. Math. Pures Appl. 4 (1925), 209–270. Zbl51.0135.02
- pari, available from http://pari.math.u-bordeaux.fr
- sage, available from http://sagemath.org Zbl1312.68206
- P. Satgé, Un analogue du calcul de Heegner. Invent. Math. 87 (1987), 425–439. Zbl0616.14023MR870738
- J. Silverman, J. Tate, Rational Points on Elliptic Curves. Springer-Verlag, 1992. Zbl0752.14034MR1171452
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.