Why is the class number of ( 11 3 ) even?

F. Lemmermeyer

Mathematica Bohemica (2013)

  • Volume: 138, Issue: 2, page 149-163
  • ISSN: 0862-7959

Abstract

top
In this article we will describe a surprising observation that occurred in the construction of quadratic unramified extensions of a family of pure cubic number fields. Attempting to find an explanation will lead us on a magical mystery tour through the land of pure cubic number fields, Hilbert class fields, and elliptic curves.

How to cite

top

Lemmermeyer, F.. "Why is the class number of $\mathbb {Q}(\@root 3 \of {11})$ even?." Mathematica Bohemica 138.2 (2013): 149-163. <http://eudml.org/doc/252462>.

@article{Lemmermeyer2013,
abstract = {In this article we will describe a surprising observation that occurred in the construction of quadratic unramified extensions of a family of pure cubic number fields. Attempting to find an explanation will lead us on a magical mystery tour through the land of pure cubic number fields, Hilbert class fields, and elliptic curves.},
author = {Lemmermeyer, F.},
journal = {Mathematica Bohemica},
keywords = {class number; pure cubic field; elliptic curve; class number; pure cubic field; elliptic curve},
language = {eng},
number = {2},
pages = {149-163},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Why is the class number of $\mathbb \{Q\}(\@root 3 \of \{11\})$ even?},
url = {http://eudml.org/doc/252462},
volume = {138},
year = {2013},
}

TY - JOUR
AU - Lemmermeyer, F.
TI - Why is the class number of $\mathbb {Q}(\@root 3 \of {11})$ even?
JO - Mathematica Bohemica
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 138
IS - 2
SP - 149
EP - 163
AB - In this article we will describe a surprising observation that occurred in the construction of quadratic unramified extensions of a family of pure cubic number fields. Attempting to find an explanation will lead us on a magical mystery tour through the land of pure cubic number fields, Hilbert class fields, and elliptic curves.
LA - eng
KW - class number; pure cubic field; elliptic curve; class number; pure cubic field; elliptic curve
UR - http://eudml.org/doc/252462
ER -

References

top
  1. Bhargava, M., Shankar, A., Binary quartic forms having bounded invariants, and the boundedness of the average rank of elliptic curves, arXiv:1006.1002v2. 
  2. Birch, B. J., Stephens, N. M., 10.1016/0040-9383(66)90021-8, Topology 5 (1966), 295-299. (1966) Zbl0146.42401MR0201379DOI10.1016/0040-9383(66)90021-8
  3. Cohen, H., Lenstra, H. W., Heuristics on class groups of number fields, Number theory, Noordwijkerhout 1983, Proc. Journ. Arithm 33-62 Lect. Notes Math. 1068, Springer, Berlin, 1984. Zbl0558.12002MR0756082
  4. Cohen, H., Martinet, J., Étude heuristique des groupes de classes des corps de nombres, J. Reine Angew. Math. 404 (1990), 39-76 French. (1990) Zbl0699.12016MR1037430
  5. Cohen, H., Martinet, J., 10.1090/S0025-5718-1994-1226813-X, Math. Comp. 63 (1994), 329-334. (1994) Zbl0827.11067MR1226813DOI10.1090/S0025-5718-1994-1226813-X
  6. Connell, I., Elliptic Curves Handbook, (1996); see http://www.math.mcgill.ca/connell/public/ECH1/. 
  7. Eisenbeis, H., Frey, G., Ommerborn, B., Computation of the 2-rank of pure cubic fields, Math. Comp. 32 (1978), 559-569. (1978) Zbl0385.12001MR0480416
  8. Hambleton, S., Lemmermeyer, F., 10.4064/aa146-1-1, Acta Arith. 146 (2011), 1-12. (2011) Zbl1211.14026MR2741187DOI10.4064/aa146-1-1
  9. Lemmermeyer, F., 10.5802/jtnb.817, J. Théor. Nombres Bordx. 24 (2012), 691-704. (2012) MR3010635DOI10.5802/jtnb.817
  10. Lemmermeyer, F., Snyder, C., Exercises in Class Field Theory, In preparation. 
  11. Liverance, E., 10.1006/jnth.1995.1048, J. Number Th. 51 (1995), 288-305. (1995) Zbl0831.14012MR1326750DOI10.1006/jnth.1995.1048
  12. Math Overflow, Question 70024, . 
  13. Monsky, P., A remark on the class number of ( p 1 / 4 ) , Unpublished manuscript, 1991. 
  14. Monsky, P., A result of Lemmermeyer on class numbers, arXiv 1009.3990. 
  15. Silverman, J., Tate, J., Rational Points on Elliptic Curves, Springer, New York (1992). (1992) Zbl0752.14034MR1171452
  16. Soleng, R., 10.1006/jnth.1994.1013, J. Number Theory 46 (1994), 214-229. (1994) Zbl0811.14035MR1269253DOI10.1006/jnth.1994.1013

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.