The -rank stratification of Artin-Schreier curves
Rachel Pries[1]; Hui June Zhu[2]
- [1] Colorado State University Mathematics department, Weber 101 Fort Collins, CO, 80523 (USA)
- [2] SUNY at Buffalo Mathematics department Buffalo, NY, 14260 (USA)
Annales de l’institut Fourier (2012)
- Volume: 62, Issue: 2, page 707-726
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topPries, Rachel, and Zhu, Hui June. "The $p$-rank stratification of Artin-Schreier curves." Annales de l’institut Fourier 62.2 (2012): 707-726. <http://eudml.org/doc/251106>.
@article{Pries2012,
abstract = {We study a moduli space $\{\mathcal\{AS\}\}_g$ for Artin-Schreier curves of genus $g$ over an algebraically closed field $k$ of characteristic $p$. We study the stratification of $\{\mathcal\{AS\}\}_g$ by $p$-rank into strata $\{\mathcal\{AS\}\}_\{g.s\}$ of Artin-Schreier curves of genus $g$ with $p$-rank exactly $s$. We enumerate the irreducible components of $\{\mathcal\{AS\}\}_\{g,s\}$ and find their dimensions. As an application, when $p=2$, we prove that every irreducible component of the moduli space of hyperelliptic $k$-curves with genus $g$ and $2$-rank $s$ has dimension $g-1+s$. We also determine all pairs $(p,g)$ for which $\{\mathcal\{AS\}\}_g$ is irreducible. Finally, we study deformations of Artin-Schreier curves with varying $p$-rank.},
affiliation = {Colorado State University Mathematics department, Weber 101 Fort Collins, CO, 80523 (USA); SUNY at Buffalo Mathematics department Buffalo, NY, 14260 (USA)},
author = {Pries, Rachel, Zhu, Hui June},
journal = {Annales de l’institut Fourier},
keywords = {Artin-Schreier; hyperelliptic; curve; moduli; $p$-rank; Artin-Schreier curve; moduli space of hyperelliptic curves; p-rank},
language = {eng},
number = {2},
pages = {707-726},
publisher = {Association des Annales de l’institut Fourier},
title = {The $p$-rank stratification of Artin-Schreier curves},
url = {http://eudml.org/doc/251106},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Pries, Rachel
AU - Zhu, Hui June
TI - The $p$-rank stratification of Artin-Schreier curves
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 2
SP - 707
EP - 726
AB - We study a moduli space ${\mathcal{AS}}_g$ for Artin-Schreier curves of genus $g$ over an algebraically closed field $k$ of characteristic $p$. We study the stratification of ${\mathcal{AS}}_g$ by $p$-rank into strata ${\mathcal{AS}}_{g.s}$ of Artin-Schreier curves of genus $g$ with $p$-rank exactly $s$. We enumerate the irreducible components of ${\mathcal{AS}}_{g,s}$ and find their dimensions. As an application, when $p=2$, we prove that every irreducible component of the moduli space of hyperelliptic $k$-curves with genus $g$ and $2$-rank $s$ has dimension $g-1+s$. We also determine all pairs $(p,g)$ for which ${\mathcal{AS}}_g$ is irreducible. Finally, we study deformations of Artin-Schreier curves with varying $p$-rank.
LA - eng
KW - Artin-Schreier; hyperelliptic; curve; moduli; $p$-rank; Artin-Schreier curve; moduli space of hyperelliptic curves; p-rank
UR - http://eudml.org/doc/251106
ER -
References
top- J. Achter, R. Pries, The -rank strata of the moduli space of hyperelliptic curves Zbl1219.14033
- Jeffrey D. Achter, Darren Glass, Rachel Pries, Curves of given -rank with trivial automorphism group, Michigan Math. J. 56 (2008), 583-592 Zbl1183.14042MR2490647
- J. Bertin, A. Mézard, Déformations formelles des revêtements sauvagement ramifiés de courbes algébriques, Invent. Math. 141 (2000), 195-238 Zbl0993.14014MR1767273
- R. Blache, First vertices for generic Newton polygons, and -cyclic coverings of the projective line
- R. Blache, -Density, exponential sums and Artin-Schreier curves
- R. Crew, Étale -covers in characteristic , Compositio Math. 52 (1984), 31-45 Zbl0558.14009MR742696
- P. Deligne, D. Mumford, The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math. No. 36 (1969), 75-109 Zbl0181.48803MR262240
- C. Faber, G. van der Geer, Complete subvarieties of moduli spaces and the Prym map, J. Reine Angew. Math. 573 (2004), 117-137 Zbl1075.14023MR2084584
- D. Glass, R. Pries, Hyperelliptic curves with prescribed -torsion, Manuscripta Math. 117 (2005), 299-317 Zbl1093.14039MR2154252
- Barry Green, Michel Matignon, Order automorphisms of the open disc of a -adic field, J. Amer. Math. Soc. 12 (1999), 269-303 Zbl0923.14007MR1630112
- D. Harbater, Moduli of -covers of curves, Comm. Algebra 8 (1980), 1095-1122 Zbl0471.14011MR579791
- Robin Hartshorne, Algebraic geometry, (1977), Springer-Verlag, New York Zbl0531.14001MR463157
- K. Lønsted, The hyperelliptic locus with special reference to characteristic two, Math. Ann. 222 (1976), 55-61 Zbl0314.14009MR407030
- S. Maugeais, On a compactification of a Hurwitz space in the wild case Zbl1099.14501
- S. Maugeais, Quelques résultats sur les déformations équivariantes des courbes stables, Manuscripta Math. 120 (2006), 53-82 Zbl1101.14038MR2223481
- A. Mézard, Quelques problèmes de déformations en caractéristique mixte
- F. Oort, Subvarieties of moduli spaces, Invent. Math. 24 (1974), 95-119 Zbl0259.14011MR424813
- R. Pries, Families of wildly ramified covers of curves, Amer. J. Math. 124 (2002), 737-768 Zbl1059.14033MR1914457
- J. Scholten, H. J. Zhu, Hyperelliptic curves in characteristic 2, Int. Math. Res. Not. (2002), 905-917 Zbl1034.14013MR1899907
- T. Sekiguchi, F. Oort, N. Suwa, On the deformation of Artin-Schreier to Kummer, Ann. Sci. École Norm. Sup. (4) 22 (1989), 345-375 Zbl0714.14024MR1011987
- J.-P. Serre, Corps Locaux, (1968), Hermann Zbl0137.02501MR354618
- Helmut Völklein, Groups as Galois groups, 53 (1996), Cambridge University Press, Cambridge Zbl0868.12003MR1405612
- H. J. Zhu, -functions of exponential sums over one-dimensional affinoids: Newton over Hodge, Int. Math. Res. Not. (2004), 1529-1550 Zbl1089.11044MR2049830
- H. J. Zhu, Hyperelliptic curves over of every 2-rank without extra automorphisms, Proc. Amer. Math. Soc. 134 (2006), 323-331 (electronic) Zbl1111.14022MR2175998
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.