Local coordinates for -character varieties of finite-volume hyperbolic 3-manifolds
Pere Menal-Ferrer[1]; Joan Porti[1]
- [1] Departament de Matemàtiques Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
Annales mathématiques Blaise Pascal (2012)
- Volume: 19, Issue: 1, page 107-122
- ISSN: 1259-1734
Access Full Article
topAbstract
topHow to cite
topMenal-Ferrer, Pere, and Porti, Joan. "Local coordinates for $\operatorname{SL}(n,\mathbf{C})$-character varieties of finite-volume hyperbolic 3-manifolds." Annales mathématiques Blaise Pascal 19.1 (2012): 107-122. <http://eudml.org/doc/251117>.
@article{Menal2012,
abstract = {Given a finite-volume hyperbolic 3-manifold, we compose a lift of the holonomy in $\operatorname\{SL\}(2,\mathbf\{C\})$ with the $n$-dimensional irreducible representation of $\operatorname\{SL\}(2,\mathbf\{C\})$ in $\operatorname\{SL\}(n,\mathbf\{C\})$. In this paper we give local coordinates of the $\operatorname\{SL\}(n,\mathbf\{C\})$-character variety around the character of this representation. As a corollary, this representation is isolated among all representations that are unipotent at the cusps.},
affiliation = {Departament de Matemàtiques Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; Departament de Matemàtiques Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain},
author = {Menal-Ferrer, Pere, Porti, Joan},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Infinitesimal Rigidity; Character Variety; Hyperbolic 3-Manifold; L2-Cohomology; hyperbolic 3–manifold; character variety; –cohomology; infinitesimal deformations},
language = {eng},
month = {1},
number = {1},
pages = {107-122},
publisher = {Annales mathématiques Blaise Pascal},
title = {Local coordinates for $\operatorname\{SL\}(n,\mathbf\{C\})$-character varieties of finite-volume hyperbolic 3-manifolds},
url = {http://eudml.org/doc/251117},
volume = {19},
year = {2012},
}
TY - JOUR
AU - Menal-Ferrer, Pere
AU - Porti, Joan
TI - Local coordinates for $\operatorname{SL}(n,\mathbf{C})$-character varieties of finite-volume hyperbolic 3-manifolds
JO - Annales mathématiques Blaise Pascal
DA - 2012/1//
PB - Annales mathématiques Blaise Pascal
VL - 19
IS - 1
SP - 107
EP - 122
AB - Given a finite-volume hyperbolic 3-manifold, we compose a lift of the holonomy in $\operatorname{SL}(2,\mathbf{C})$ with the $n$-dimensional irreducible representation of $\operatorname{SL}(2,\mathbf{C})$ in $\operatorname{SL}(n,\mathbf{C})$. In this paper we give local coordinates of the $\operatorname{SL}(n,\mathbf{C})$-character variety around the character of this representation. As a corollary, this representation is isolated among all representations that are unipotent at the cusps.
LA - eng
KW - Infinitesimal Rigidity; Character Variety; Hyperbolic 3-Manifold; L2-Cohomology; hyperbolic 3–manifold; character variety; –cohomology; infinitesimal deformations
UR - http://eudml.org/doc/251117
ER -
References
top- Michael T. Anderson, Topics in conformally compact Einstein metrics, Perspectives in Riemannian geometry 40 (2006), 1-26, Amer. Math. Soc., Providence, RI Zbl1110.53031MR2237104
- K. Bromberg, Rigidity of geometrically finite hyperbolic cone-manifolds, Geom. Dedicata 105 (2004), 143-170 Zbl1057.53029MR2057249
- Michael Kapovich, Hyperbolic manifolds and discrete groups, 183 (2001), Birkhäuser Boston Inc., Boston, MA Zbl0958.57001MR1792613
- Alexander Lubotzky, Andy R. Magid, Varieties of representations of finitely generated groups, Mem. Amer. Math. Soc. 58 (1985) Zbl0598.14042MR818915
- Yozô Matsushima, Shingo Murakami, On vector bundle valued harmonic forms and automorphic forms on symmetric riemannian manifolds, Ann. of Math. (2) 78 (1963), 365-416 Zbl0125.10702MR153028
- Pere Menal-Ferrer, Joan Porti, Twisted cohomology for hyperbolic three manifolds, to appear in Osaka J. Math. (2012), arXiv:1001.2242 Zbl1255.57018
- M. S. Raghunathan, On the first cohomology of discrete subgroups of semisimple Lie groups, Amer. J. Math. 87 (1965), 103-139 Zbl0132.02102MR173730
- André Weil, Remarks on the cohomology of groups, Ann. of Math. (2) 80 (1964), 149-157 Zbl0192.12802MR169956
- Hartmut Weiss, Local rigidity of 3-dimensional cone-manifolds, J. Differential Geom. 71 (2005), 437-506 Zbl1098.53038MR2198808
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.