Non-existence and splitting theorems for normal integral bases

Cornelius Greither[1]; Henri Johnston[2]

  • [1] Universität der Bundeswehr München Fakultät für Informatik Institut für theoretische Informatik und Mathematik 85577 Neubiberg (Germany)
  • [2] St. John’s College Cambridge CB2 1TP (United Kingdom)

Annales de l’institut Fourier (2012)

  • Volume: 62, Issue: 1, page 417-437
  • ISSN: 0373-0956

Abstract

top
We establish new conditions that prevent the existence of (weak) normal integral bases in tame Galois extensions of number fields. This leads to the following result: under appropriate technical hypotheses, the existence of a normal integral basis in the upper layer of an abelian tower K L forces the tower to be split in a very strong sense.

How to cite

top

Greither, Cornelius, and Johnston, Henri. "Non-existence and splitting theorems for normal integral bases." Annales de l’institut Fourier 62.1 (2012): 417-437. <http://eudml.org/doc/251127>.

@article{Greither2012,
abstract = {We establish new conditions that prevent the existence of (weak) normal integral bases in tame Galois extensions of number fields. This leads to the following result: under appropriate technical hypotheses, the existence of a normal integral basis in the upper layer of an abelian tower $\mathbb\{Q\} \subset K \subset L$ forces the tower to be split in a very strong sense.},
affiliation = {Universität der Bundeswehr München Fakultät für Informatik Institut für theoretische Informatik und Mathematik 85577 Neubiberg (Germany); St. John’s College Cambridge CB2 1TP (United Kingdom)},
author = {Greither, Cornelius, Johnston, Henri},
journal = {Annales de l’institut Fourier},
keywords = {Normal integral basis; (weak) normal integral basis; Hilbert-Speiser Theorem; arithmetically disjoint; arithmetically split; Amitsur cohomology},
language = {eng},
number = {1},
pages = {417-437},
publisher = {Association des Annales de l’institut Fourier},
title = {Non-existence and splitting theorems for normal integral bases},
url = {http://eudml.org/doc/251127},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Greither, Cornelius
AU - Johnston, Henri
TI - Non-existence and splitting theorems for normal integral bases
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 1
SP - 417
EP - 437
AB - We establish new conditions that prevent the existence of (weak) normal integral bases in tame Galois extensions of number fields. This leads to the following result: under appropriate technical hypotheses, the existence of a normal integral basis in the upper layer of an abelian tower $\mathbb{Q} \subset K \subset L$ forces the tower to be split in a very strong sense.
LA - eng
KW - Normal integral basis; (weak) normal integral basis; Hilbert-Speiser Theorem; arithmetically disjoint; arithmetically split; Amitsur cohomology
UR - http://eudml.org/doc/251127
ER -

References

top
  1. J. Brinkhuis, Normal integral bases and embedding problems, Math. Ann. 264 (1983), 537-543 Zbl0516.12005MR716266
  2. J. Brinkhuis, Normal integral bases and complex conjugation, J. Reine Angew. Math. 375/376 (1987), 157-166 Zbl0609.12009MR882295
  3. N. P. Byott, G. Lettl, Relative Galois module structure of integers of abelian fields, J. Théor. Nombres Bordeaux 8 (1996), 125-141 Zbl0859.11059MR1399950
  4. J. Cougnard, Nouveaux exemples d’extension relatives sans base normale, Ann. Fac. Sci. Toulouse Math. (6) 10 (2001), 493-505 MR1923687
  5. A. Fröhlich, Galois module structure of algebraic integers, 1 (1983), Springer-Verlag, Berlin Zbl0501.12012MR717033
  6. A. Fröhlich, M. J. Taylor, Algebraic number theory, 27 (1993), Cambridge University Press, Cambridge Zbl0744.11001MR1215934
  7. C. Greither, Relative integral normal bases in ( ζ p ) , J. Number Theory 35 (1990), 180-193 Zbl0718.11053MR1057321
  8. C. Greither, Cyclic Galois extensions of commutative rings, 1534 (1992), Springer-Verlag, Berlin Zbl0788.13003MR1222646
  9. S. Lang, Cyclotomic fields II, 69 (1980), Springer-Verlag, New York Zbl0395.12005MR566952
  10. L. R. McCulloh, Galois module structure of abelian extensions, J. Reine Angew. Math. 375/376 (1987), 259-306 Zbl0619.12008MR882300
  11. L. C. Washington, Introduction to cyclotomic fields, 83 (1997), Springer-Verlag, New York Zbl0484.12001MR1421575

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.