Relative Galois module structure of integers of abelian fields

Nigel P. Byott; Günter Lettl

Journal de théorie des nombres de Bordeaux (1996)

  • Volume: 8, Issue: 1, page 125-141
  • ISSN: 1246-7405

Abstract

top
Let L / K be an extension of algebraic number fields, where L is abelian over . In this paper we give an explicit description of the associated order 𝒜 L / K of this extension when K is a cyclotomic field, and prove that o L , the ring of integers of L , is then isomorphic to 𝒜 L / K . This generalizes previous results of Leopoldt, Chan Lim and Bley. Furthermore we show that 𝒜 L / K is the maximal order if L / K is a cyclic and totally wildly ramified extension which is linearly disjoint to ( m ' ) / K , where m ' is the conductor of K .

How to cite

top

Byott, Nigel P., and Lettl, Günter. "Relative Galois module structure of integers of abelian fields." Journal de théorie des nombres de Bordeaux 8.1 (1996): 125-141. <http://eudml.org/doc/247842>.

@article{Byott1996,
abstract = {Let $L/K$ be an extension of algebraic number fields, where $L$ is abelian over $\mathbb \{Q\}$. In this paper we give an explicit description of the associated order $\mathcal \{A\}_\{L/K\}$ of this extension when $K$ is a cyclotomic field, and prove that $o_L$, the ring of integers of $L$, is then isomorphic to $\mathcal \{A\}_\{L/K\}$. This generalizes previous results of Leopoldt, Chan Lim and Bley. Furthermore we show that $\mathcal \{A\}_\{L/K\}$ is the maximal order if $L/K$ is a cyclic and totally wildly ramified extension which is linearly disjoint to $\mathbb \{Q\}^\{(m^\{\prime \})\}/K$, where $m^\{\prime \}$ is the conductor of $K$.},
author = {Byott, Nigel P., Lettl, Günter},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {relative Galois module structure; abelian extension of a cyclotomic field; order},
language = {eng},
number = {1},
pages = {125-141},
publisher = {Université Bordeaux I},
title = {Relative Galois module structure of integers of abelian fields},
url = {http://eudml.org/doc/247842},
volume = {8},
year = {1996},
}

TY - JOUR
AU - Byott, Nigel P.
AU - Lettl, Günter
TI - Relative Galois module structure of integers of abelian fields
JO - Journal de théorie des nombres de Bordeaux
PY - 1996
PB - Université Bordeaux I
VL - 8
IS - 1
SP - 125
EP - 141
AB - Let $L/K$ be an extension of algebraic number fields, where $L$ is abelian over $\mathbb {Q}$. In this paper we give an explicit description of the associated order $\mathcal {A}_{L/K}$ of this extension when $K$ is a cyclotomic field, and prove that $o_L$, the ring of integers of $L$, is then isomorphic to $\mathcal {A}_{L/K}$. This generalizes previous results of Leopoldt, Chan Lim and Bley. Furthermore we show that $\mathcal {A}_{L/K}$ is the maximal order if $L/K$ is a cyclic and totally wildly ramified extension which is linearly disjoint to $\mathbb {Q}^{(m^{\prime })}/K$, where $m^{\prime }$ is the conductor of $K$.
LA - eng
KW - relative Galois module structure; abelian extension of a cyclotomic field; order
UR - http://eudml.org/doc/247842
ER -

References

top
  1. [1] W. Bley, A Leopoldt-type result for rings of integers of cyclotomic extensions, Canad. Math. Bull.38 (1995), 141 - 148. Zbl0830.11037MR1335090
  2. [2] J. Brinkhuis, Normal integral bases and complex conjugation, J reine angew. Math.375/376 (1987), 157 - 166. Zbl0609.12009MR882295
  3. [3] S.-P. Chan & C.-H. Lim, Relative Galois module structure of rings of integers of cyclotomic fields, J. reine angew. Math.434 (1993), 205 -220. Zbl0753.11038MR1195696
  4. [4] A. Fröhlich, Galois module structure of algebraic integers, Erg. d. Math.3, vol. 1, Springer, 1983. Zbl0501.12012MR717033
  5. [5] A. Fröhlich & M.J. Taylor, Algebraic number theory, Camb. Studies Adv. Math. vol. 27, Cambridge University Press, 1991. Zbl0744.11001
  6. [6] H.-W. Leopoldt, Über die Hauptordnung der ganzen Elemente eines abelschen Zahlkörpers, J. reine angew. Math.201 (1959), 119 -149. Zbl0098.03403MR108479
  7. [7] G. Lettl, The ring of integers of an abelian number field, J. reine angew. Math.404 (1990), 162-170. Zbl0703.11060MR1037435
  8. [8] G. Lettl, Note on the Galois module structure of quadratic extensions, Coll. Math.67 (1994), 15 - 19. Zbl0812.11063MR1292939
  9. [9] K.W. Roggenkamp & M.J. Taylor, Group rings and class groups, DMV-Seminar Bd. 18, Birkhäuser, 1992. Zbl0742.00085MR1167449
  10. [10] M.J. Taylor, Relative Galois module structure of rings of integers, Orders and their applications (Proceedings of Oberwolfach 1984) (I. Reiner & K.W. Roggenkamp, eds.), Lect. Notes1142, Springer, 1985, pp. 289-306. Zbl0578.12004MR812505

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.