Local rigidity of aspherical three-manifolds
- [1] LATP, UMR 6632, Centre de Mathématiques et d’Informatique, Technopole de Chateau-Gombert, 39, rue Frédéric Joliot-Curie - 13453 Marseille Cedex 13
Annales de l’institut Fourier (2012)
- Volume: 62, Issue: 1, page 393-416
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topDerbez, Pierre. "Local rigidity of aspherical three-manifolds." Annales de l’institut Fourier 62.1 (2012): 393-416. <http://eudml.org/doc/251136>.
@article{Derbez2012,
abstract = {In this paper we construct, for each aspherical oriented $3$-manifold $M$, a $2$-dimensional class in the $l_1$-homology of $M$ whose norm combined with the Gromov simplicial volume of $M$ gives a characterization of those nonzero degree maps from $M$ to $N$ which are homotopic to a covering map. As an application we characterize those degree one maps which are homotopic to a homeomorphism in term of isometries between the bounded cohomology groups of $M$ and $N$.},
affiliation = {LATP, UMR 6632, Centre de Mathématiques et d’Informatique, Technopole de Chateau-Gombert, 39, rue Frédéric Joliot-Curie - 13453 Marseille Cedex 13},
author = {Derbez, Pierre},
journal = {Annales de l’institut Fourier},
keywords = {Aspherical $3$-manifolds; bounded cohomology; $l_1$-homology; non-zero degree maps; topological rigidity; aspherical 3-manifolds},
language = {eng},
number = {1},
pages = {393-416},
publisher = {Association des Annales de l’institut Fourier},
title = {Local rigidity of aspherical three-manifolds},
url = {http://eudml.org/doc/251136},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Derbez, Pierre
TI - Local rigidity of aspherical three-manifolds
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 1
SP - 393
EP - 416
AB - In this paper we construct, for each aspherical oriented $3$-manifold $M$, a $2$-dimensional class in the $l_1$-homology of $M$ whose norm combined with the Gromov simplicial volume of $M$ gives a characterization of those nonzero degree maps from $M$ to $N$ which are homotopic to a covering map. As an application we characterize those degree one maps which are homotopic to a homeomorphism in term of isometries between the bounded cohomology groups of $M$ and $N$.
LA - eng
KW - Aspherical $3$-manifolds; bounded cohomology; $l_1$-homology; non-zero degree maps; topological rigidity; aspherical 3-manifolds
UR - http://eudml.org/doc/251136
ER -
References
top- I. Agol, Lower bounds on volumes of hyperbolic Haken 3-manifolds Zbl1155.58016
- J. Barges, E. Ghys, Surfaces et cohomologie bornée, Ergodic Theory Dyn. Syst. 92 (1988), 509-526 Zbl0641.55015MR939473
- M. Boileau, S. Wang, Non-zero degree maps and surface bundles over , J. Differential Geom. 43 (1996), 789-806 Zbl0868.57029MR1412685
- R. Brooks, W. Goldman, The Godbillon-Vey invariant of a transversely homogeneous foliation, Trans. Amer. Math. Soc. 286 (1984), 651-664 Zbl0548.57016MR760978
- R. Brooks, W. Goldman, Volumes in Seifert space, Duke Math. J. 51 (1984), 529-545 Zbl0546.57003MR757951
- P. Derbez, Topological rigidity and Gromov simplicial volume, Comment. Math. Helv. 85 (2010), 1-37 Zbl1204.57012MR2563679
- P. Derbez, S. Wang, Finiteness of mapping degrees and -volume on graph manifolds, Algebraic and Geometric Topology 9 (2009), 1727-1749 Zbl1187.57021MR2539193
- K. Fujiwara, T. Soma, Bounded classes in the cohomology of manifolds, Dedicated to John Stallings on the occasion of his 65th birthday. Geom. Dedicata 92 (2002), 73-85 Zbl1035.57012MR1934011
- M. Gromov, Volume and bounded cohomology, Inst. Hautes Études Sci. Publ. Math. (1982), 5-99 Zbl0516.53046MR686042
- J. Hempel, -manifolds, 86 (1976), Princeton Univ. Press Zbl0345.57001MR415619
- W. Jaco, P.B. Shalen, Seifert fibered space in 3-manifolds, 21 (1979), Mem. Amer. Math. Soc. Zbl0415.57005MR539411
- K. Johannson, Homotopy equivalences of 3-manifolds with boundaries, 761 (1979), Springer, Berlin Zbl0412.57007MR551744
- M. Kreck, W. Lück, Topological rigidity for non-aspherical manifolds Zbl1196.57018
- B. Leeb, -manifolds with(out) metrics of nonpositive curvature, Invent. Math. 122 (1995), 277-289 Zbl0840.53031MR1358977
- J. Luecke, Y. Wu, Relative Euler number and finite covers of graph manifolds, Geometric topology (Athens, GA, 1993) (1997), 80-103, Amer. Math. Soc., Providence, RI Zbl0889.57024MR1470722
- S. Matsumoto, S. Morita, Bounded cohomology of certain groups of homeomorphisms, Proc. Amer. Math. Soc. 94 (1985), 359-544 Zbl0536.57023MR787909
- D. A. Neumann, -manifolds fibering over , Proc. Am. Math. Soc. 58 (1979), 353-356 Zbl0334.57003MR413105
- W. Neumann, A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves, Trans. Am. Math. Soc. 268 (1981), 299-343 Zbl0546.57002MR632532
- Y. Rong, Maps between Seifert fibered spaces of infinite , Pacific J. Math. 160 (1993), 143-154 Zbl0815.57002MR1227509
- T. Soma, A rigidity theorem for Haken manifolds, Math. Proc. Cambridge Philos. Soc. 118 (1995), 141-160 Zbl0852.57010MR1329465
- W. Thurston, Three dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. (N.S.) 6 (1982), 357-381 Zbl0496.57005MR648524
- W. Thurston, A norm for the homology of 3-manifolds, Mem. Amer. Math. Soc. 59 (1986), i-vi and 99–130 Zbl0585.57006MR823443
- S. Wang, The existence of maps of nonzero degree between aspherical 3-manifolds, Math. Z. 208 (1991), 147-160 Zbl0737.57006MR1125739
- S. Wang, The -injectivity of self-maps of nonzero degree on -manifolds, Math. Ann. 297 (1993), 171-189 Zbl0793.57008MR1238414
- S. Wang, Q. Zhou, Any -manifold -dominates at most finitely many geometric -manifolds, Math. Ann. 322 (2002), 525-535 Zbl0992.57017MR1895705
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.