Volume and bounded cohomology
Publications Mathématiques de l'IHÉS (1982)
- Volume: 56, page 5-99
- ISSN: 0073-8301
Access Full Article
topHow to cite
topGromov, Michael. "Volume and bounded cohomology." Publications Mathématiques de l'IHÉS 56 (1982): 5-99. <http://eudml.org/doc/103988>.
@article{Gromov1982,
author = {Gromov, Michael},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {simplicial volume; minimal volume; simplicial norm; fundamental class; closed surfaces; complete Riemannian manifold; bounded cohomology; Betti number; fundamental group},
language = {eng},
pages = {5-99},
publisher = {Institut des Hautes Études Scientifiques},
title = {Volume and bounded cohomology},
url = {http://eudml.org/doc/103988},
volume = {56},
year = {1982},
}
TY - JOUR
AU - Gromov, Michael
TI - Volume and bounded cohomology
JO - Publications Mathématiques de l'IHÉS
PY - 1982
PB - Institut des Hautes Études Scientifiques
VL - 56
SP - 5
EP - 99
LA - eng
KW - simplicial volume; minimal volume; simplicial norm; fundamental class; closed surfaces; complete Riemannian manifold; bounded cohomology; Betti number; fundamental group
UR - http://eudml.org/doc/103988
ER -
References
top- [1] M. ATIYAH, Elliptic operators, discrete groups and von Neuman algebras, Astérisque, 32-33 (1976), 43-72. Zbl0323.58015MR54 #8741
- [2] A. AVEZ, Variétés Riemanniennes sans points focaux, C.R. Acad. Sc. Paris, 270 (1970), 188-191. Zbl0188.26402MR41 #961
- [3] G. BAUMSLAG, S. PRIDE, Groups with two more generators than relators, J. Lond. Math. Soc. (2) 17 (1978), 425-426. Zbl0387.20030MR58 #11137
- [4] G. BAUMSLAG, S. PRIDE, Groups with one more generator than relators, Math. Z., 167 (1979), 279-281. Zbl0388.20025MR80i:20014
- [5] R. BISHOP, R. CRITTENDEN, Geometry of manifolds, New York, Acad. Press (1964). Zbl0132.16003MR29 #6401
- [6] R. BROOKS, Some remarks on bounded cohomology, in Riemannian surfaces and related topics, Ann. Math. Studies, 91 (1981), 53-65. Zbl0457.55002MR83a:57038
- [7] P. BUSER, H. KARCHER, Gromov's almost flat manifolds, Astérisque, 81 (1981). Zbl0459.53031MR83m:53070
- [8] P. CONNER, R. FRANK, Actions of compact Lie groups on aspherical manifolds, Topology of Manifolds (Proc. Inst. Univ. Georgia, Athens, GA, 1969), (1970), 227-264. Zbl0312.57025MR42 #6839
- [9] J. CHEEGER, Finiteness theorems for Riemannian manifolds, Am. J. Math., 92 (1970), 61-75. Zbl0194.52902MR41 #7697
- [10] J. CHEEGER, D. EBIN, Comparison theorems in Riemannian geometry, North Holland, 1975. Zbl0309.53035MR56 #16538
- [11] J. CHEEGER, M. GROMOV, M. TAILOR, Finite propagation Speed, Kernel estimates for functions of the Laplace Operator and the geometry of Complete Riemannian manifold, J. Diff. Geom., 17 (1982), 15-55. Zbl0493.53035MR84b:58109
- [12] E. DINABURG, On the relations among various entropy characteristics of dynamical systems, Math USSR Izv., 5 (1971), 337-378. Zbl0248.58007
- [13] P. EBERLEIN, Lattices in spaces of non-positive curvature, Ann. of Math., 111 (1980), 435-477. Zbl0401.53015MR82m:53040
- [14] H. FURSTENBERG, Boundary theory and stochastic processes on homogeneous spaces, Proc. Symp. in Pure Math., XXVI (1973), 193-233. Zbl0289.22011MR50 #4815
- [15] S. GALLOT, Quantitative Sobolev Estimates on Riemannian manifolds and applications, C.R. Acad. Sc. Paris, 292 (1981), 375-377. Zbl0458.53026MR82b:58096
- [16] S. GALLOT, Inégalités de Sobolev et applications géométriques, to appear. Zbl0535.53034
- [17] S. GALLOT, Inégalités isopérimétriques sur les variétés compactes sans bord, to appear. Zbl0674.53001
- [18] D. GROMOLL, W. MEYER, W. KLINGENBERG, Riemannsche Geometrie im Grossen, Springer Lect. Notes, 55 (1978).
- [19] F. GREENLEAF, Invariant means on topological groups, Van Nostrand, Reinhold Company, 1969. Zbl0174.19001MR40 #4776
- [20] M. GROMOV, Manifolds of negative curvature, J. Diff. Geom., 13 (1978), 223-231. Zbl0433.53028MR80h:53040
- [21] M. GROMOV, Hyperbolic manifolds, groups and actions, in Riemannian surfaces and related topics, Ann. Math. Studies, 97 (1981), 183-215. Zbl0467.53035MR82m:53035
- [22] M. GROMOV, Paul Levy's Isoperimetric inequality, Preprint I.H.E.S., 1980.
- [23] M. GROMOV, Groups of polynomial growth and expanding maps, Publ. Math. I.H.E.S., 53 (1981), 53-78. Zbl0474.20018MR83b:53041
- [24] M. GROMOV, Three remarks on geodesic dynamics and the fundamental group, Preprint, SUNY at Stony Brook, 1977. Zbl1002.53028
- [25] M. GROMOV, Hyperbolic manifolds according to Thurston and Jørgensen, Springer Lect. Notes, 842 (1981), 40-53. Zbl0452.51017MR84b:53046
- [26] M. GROMOV, B. LAWSON, Spin and scalar curvature in the presence of a fundamental group, Ann. of Math., 111 (1980), 209-231. Zbl0445.53025MR81g:53022
- [27] U. HAAGERUP, H. MUNKHOLM, Simplices of maximal volume in Hyperbolic N-space, Preprint, 1979. Zbl0493.51016
- [28] G. HARDER, A Gauss-Bonnet formula for discrete arithmetically defined groups, Ann. Sci. École Normale Sup., 4 (1971), 409-455. Zbl0232.20088MR46 #8255
- [29] H. HESS, R. SCHRADER, D. UHLENBROCK, Kato's inequality and the spectral distribution of Laplacians on compact Riemannian manifold, J. Diff. Geom., 15 (1980), 27-39. Zbl0442.58032MR82g:58090
- [30] H. HIRONAKA, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, Ann. of Math., 79 (1964), 102-203. Zbl0122.38603MR33 #7333
- [31] H. HIRONAKA, Triangulation of algebraic sets, Proc. Symp. Pure Math., XXIX (1975), 165-185. Zbl0332.14001MR51 #10331
- [32] N. HITCHIN, Compact four dimensional Einstein manifolds, J. Diff. Geom., 9 (1974), 435-441. Zbl0281.53039MR50 #3149
- [33] J. M. HIRSCH, W. THURSTON, Foliated bundles, invariant measures and flat manifolds, Ann. of Math., 101 (1975), 369-390. Zbl0321.57015MR51 #6842
- [34] T. JØRGENSEN, Compact 3-manifolds of constant negative curvature flbering over the circle, Ann. of Math., 106 (1977), 61-72. Zbl0368.53025
- [35] H. INOUE, K. YANO, The Gromov invariant of negatively curved manifolds, Topology, 21 (1981), 83-89. Zbl0469.53038MR82k:53091
- [36] A. KATOK, Entropy and closed geodesics, to appear. Zbl0525.58027
- [37] A. MANNING, Topological entropy for geodesic flows, Ann. of Math., 110 (1979), 567-573. Zbl0426.58016MR81e:58044
- [38] G. MARGULIS, Applications of ergodic theory to the investigation of manifolds of negative curvature, Funct. Ann. App., 3 (1969), 335-336. Zbl0207.20305MR41 #2582
- [39] J. MILNOR, On the existence of a connection with curvature zero, Comm. Math. Helv., 32 (1958), 215-233. Zbl0196.25101MR20 #2020
- [40] J. MOORE, Semi simplicial complexes and Postnikov systems, Symp. de Top. Alg. Mexico, 1958, 232-248. Zbl0089.18001MR22 #1894
- [41] M. RAGHUNATHAN, Discrete subgroups of Lie groups, Springer, 1972. Zbl0254.22005MR58 #22394a
- [42] R. SAVAGE, The space of positive definite matrices and Gromov's invariant, Preprint, Univ. of Utah, 1981. Zbl0498.53037
- [43] T. SOMA, The Gromov invariant for links, Inv. Math., 64 (1981), 445-454. Zbl0478.57006MR83a:57014
- [44] D. SULLIVAN, A generalization of Milnor's inequality concerning affine foliations and affine manifolds, Comm. Math. Helv., 51 (1976), 183-189. Zbl0335.57017MR54 #6163
- [45] D. SULLIVAN, Cycles for the dynamical study of foliated manifolds and complex manifolds, Inv. Math., 36 (1976), 225-255. Zbl0335.57015MR55 #6440
- [46] D. SULLIVAN, On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions, in Riemannian surfaces and related topics, Ann. Math. Studies, 97 (1981), 465-497. Zbl0567.58015MR83f:58052
- [47] W. THURSTON, Geometry and topology of 3-manifolds, Lecture Notes, Princeton, 1978.
- [48] H. WINKELNKEMPER, Un teorema sobre variedades de dimension 4, Acta Mexicana Ci. Tecn., 2 (1968), 88-89. Zbl0213.50202MR38 #6623
- [49] K. YANO, Gromov invariant and S1-actions, to appear. Zbl0518.57017
- [50] W. BROWDER, W. C. HSIANG, G-actions and the fundamental group, Inv. Math., 65 (1982), 411-424. Zbl0519.57034MR83d:57026
Citations in EuDML Documents
top- Piotr Mikrut, Bordism of spin manifolds with local actions of Tori in low dimensions
- Renata Grimaldi, Ignazia Maniscalco, Extension de métriques riemanniennes et type de croissance
- Thilo Kuessner, Proportionality principle for cusped manifolds
- Richard Pereyrol, Volume simplicial des espaces hermitiens symétriques
- Gérard Besson, L'entropie minimale des espaces symétriques
- Thilo Kuessner, An invariant of nonpositively curved contact manifolds
- Laurent Bessières, Sur le volume minimal des variétés ouvertes
- Bernhard Hanke, Dieter Kotschick, John Roe, Thomas Schick, Coarse topology, enlargeability, and essentialness
- Sylvestre Gallot, Volume minimal des variétés hyperboliques : un théorème local et un résultat global
- Laurent Bessières, Sur le volume minimal des variétés ouvertes
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.