Explicit bounds for split reductions of simple abelian varieties

Jeffrey D. Achter[1]

  • [1] Department of Mathematics Colorado State University Fort Collins, CO 80523

Journal de Théorie des Nombres de Bordeaux (2012)

  • Volume: 24, Issue: 1, page 41-55
  • ISSN: 1246-7405

Abstract

top
Let X / K be an absolutely simple abelian variety over a number field; we study whether the reductions X 𝔭 tend to be simple, too. We show that if End ( X ) is a definite quaternion algebra, then the reduction X 𝔭 is geometrically isogenous to the self-product of an absolutely simple abelian variety for 𝔭 in a set of positive density, while if X is of Mumford type, then X 𝔭 is simple for almost all 𝔭 . For a large class of abelian varieties with commutative absolute endomorphism ring, we give an explicit upper bound for the growth of the set of primes of non-simple reduction.

How to cite

top

Achter, Jeffrey D.. "Explicit bounds for split reductions of simple abelian varieties." Journal de Théorie des Nombres de Bordeaux 24.1 (2012): 41-55. <http://eudml.org/doc/251138>.

@article{Achter2012,
abstract = {Let $X/K$ be an absolutely simple abelian variety over a number field; we study whether the reductions $X_\{\mathfrak\{p\}\}$ tend to be simple, too. We show that if $\operatorname\{End\}(X)$ is a definite quaternion algebra, then the reduction $X_\{\mathfrak\{p\}\}$ is geometrically isogenous to the self-product of an absolutely simple abelian variety for $\{\mathfrak\{p\}\}$ in a set of positive density, while if $X$ is of Mumford type, then $X_\{\mathfrak\{p\}\}$ is simple for almost all $\{\mathfrak\{p\}\}$. For a large class of abelian varieties with commutative absolute endomorphism ring, we give an explicit upper bound for the growth of the set of primes of non-simple reduction.},
affiliation = {Department of Mathematics Colorado State University Fort Collins, CO 80523},
author = {Achter, Jeffrey D.},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
month = {3},
number = {1},
pages = {41-55},
publisher = {Société Arithmétique de Bordeaux},
title = {Explicit bounds for split reductions of simple abelian varieties},
url = {http://eudml.org/doc/251138},
volume = {24},
year = {2012},
}

TY - JOUR
AU - Achter, Jeffrey D.
TI - Explicit bounds for split reductions of simple abelian varieties
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2012/3//
PB - Société Arithmétique de Bordeaux
VL - 24
IS - 1
SP - 41
EP - 55
AB - Let $X/K$ be an absolutely simple abelian variety over a number field; we study whether the reductions $X_{\mathfrak{p}}$ tend to be simple, too. We show that if $\operatorname{End}(X)$ is a definite quaternion algebra, then the reduction $X_{\mathfrak{p}}$ is geometrically isogenous to the self-product of an absolutely simple abelian variety for ${\mathfrak{p}}$ in a set of positive density, while if $X$ is of Mumford type, then $X_{\mathfrak{p}}$ is simple for almost all ${\mathfrak{p}}$. For a large class of abelian varieties with commutative absolute endomorphism ring, we give an explicit upper bound for the growth of the set of primes of non-simple reduction.
LA - eng
UR - http://eudml.org/doc/251138
ER -

References

top
  1. Jeffrey D. Achter, Split reductions of simple abelian varieties, Math. Res. Lett. 16 (2009), no. 2, 199–213. Zbl1180.14046MR2496739
  2. Grzegorz Banaszak, Wojciech Gajda, and Piotr Krasoń, On the image of Galois l -adic representations for abelian varieties of type III, Tohoku Math. J. (2) 62 (2010), no. 2, 163–189. MR2663452 Zbl1202.14042MR2663452
  3. Ching-Li Chai and Frans Oort, A note on the existence of absolutely simple Jacobians, J. Pure Appl. Algebra 155 (2001), no. 2-3, 115–120. MRMR1801409 (2002a:14020) Zbl1006.14006MR1801409
  4. Nick Chavdarov, The generic irreducibility of the numerator of the zeta function in a family of curves with large monodromy, Duke Math. J. 87 (1997), no. 1, 151–180. MR99d:11071 Zbl0941.14006MR1440067
  5. Gerd Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (1983), no. 3, 349–366. MRMR718935 (85g:11026a) Zbl0588.14026MR718935
  6. Patrick X. Gallagher, The number of conjugacy classes in a finite group, Math. Z. 118 (1970), 175–179. MRMR0276318 (43 #2065) Zbl0221.20006MR276318
  7. Nicholas M. Katz, Report on the irreducibility of L -functions, Number Theory, Analysis and Geometry, Springer-Verlag, New York, 2012, pp. 321–353. Zbl1276.11147
  8. E. Kowalski, The large sieve and its applications, Cambridge Tracts in Mathematics, vol. 175, Cambridge University Press, Cambridge, 2008. MRMR2426239 (2009f:11123) Zbl1177.11080MR2426239
  9. M. J. Larsen and R. Pink, Abelian varieties, l -adic representations, and l -independence, Math. Ann. 302 (1995), no. 3, 561–579. MRMR1339927 (97e:14057) Zbl0867.14019MR1339927
  10. Michael J. Larsen, Maximality of Galois actions for compatible systems, Duke Math. J. 80 (1995), no. 3, 601–630. MRMR1370110 (97a:11090) Zbl0912.11026MR1370110
  11. Martin W. Liebeck and László Pyber, Upper bounds for the number of conjugacy classes of a finite group, J. Algebra 198 (1997), no. 2, 538–562. MRMR1489911 (99c:20023) Zbl0892.20017MR1489911
  12. D. Mumford, A note of Shimura’s paper “Discontinuous groups and abelian varieties”, Math. Ann. 181 (1969), 345–351. MRMR0248146 (40 #1400) Zbl0169.23301MR248146
  13. V. K. Murty and V. M. Patankar, Splitting of abelian varieties, IMRN 2008 (2008), Art. ID rnn033, 27 pages. Zbl1152.14043MR2426750
  14. Rutger Noot, Abelian varieties—Galois representation and properties of ordinary reduction, Compositio Math. 97 (1995), no. 1-2, 161–171, Special issue in honour of Frans Oort. MRMR1355123 (97a:11093) Zbl0868.14021MR1355123
  15. —, On Mumford’s families of abelian varieties, J. Pure Appl. Algebra 157 (2001), no. 1, 87–106. MRMR1809220 (2002a:14023) MR1809220
  16. Kenneth A. Ribet, Galois action on division points of Abelian varieties with real multiplications, Amer. J. Math. 98 (1976), no. 3, 751–804. MRMR0457455 (56 #15660) Zbl0348.14022MR457455
  17. Jean-Pierre Serre, Lettre à Ken Ribet 1/1/1981, Œuvres. Collected papers. IV, Springer-Verlag, Berlin, 2000, pp. 1–16. MRMR1730973 (2001e:01037) MR1730973
  18. —, Lettre à Ken Ribet 7/3/1986, Œuvres. Collected papers. IV, Springer-Verlag, Berlin, 2000, pp. 56–65. MRMR1730973 (2001e:01037) 
  19. —, Lettre à Marie-France Vignéras 10/2/1986, Œuvres. Collected papers. IV, Springer-Verlag, Berlin, 2000, pp. 38–55. MRMR1730973 (2001e:01037) 
  20. Goro Shimura, On analytic families of polarized abelian varieties and automorphic functions, Ann. of Math. (2) 78 (1963), 149–192. MRMR0156001 (27 #5934) Zbl0142.05402MR156001
  21. A. Silverberg, Fields of definition for homomorphisms of abelian varieties, J. Pure Appl. Algebra 77 (1992), no. 3, 253–262. MRMR1154704 (93f:14022) Zbl0808.14037MR1154704
  22. A. Silverberg and Yu. G. Zarhin, Connectedness extensions for abelian varieties, Math. Z. 228 (1998), no. 2, 387–403. MRMR1630512 (99d:11065) Zbl0938.14028MR1630512
  23. John Tate, Endomorphisms of abelian varieties over finite fields, Invent. Math. 2 (1966), 134–144. MRMR0206004 (34 #5829) Zbl0147.20303MR206004
  24. Adrian Vasiu, Some cases of the Mumford-Tate conjecture and Shimura varieties, Indiana Univ. Math. J. 57 (2008), 1–76. Zbl1173.11039MR2400251
  25. David Zywina, The large sieve and Galois representations, (2008). MR2712311

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.