Explicit bounds for split reductions of simple abelian varieties
- [1] Department of Mathematics Colorado State University Fort Collins, CO 80523
Journal de Théorie des Nombres de Bordeaux (2012)
- Volume: 24, Issue: 1, page 41-55
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topAchter, Jeffrey D.. "Explicit bounds for split reductions of simple abelian varieties." Journal de Théorie des Nombres de Bordeaux 24.1 (2012): 41-55. <http://eudml.org/doc/251138>.
@article{Achter2012,
abstract = {Let $X/K$ be an absolutely simple abelian variety over a number field; we study whether the reductions $X_\{\mathfrak\{p\}\}$ tend to be simple, too. We show that if $\operatorname\{End\}(X)$ is a definite quaternion algebra, then the reduction $X_\{\mathfrak\{p\}\}$ is geometrically isogenous to the self-product of an absolutely simple abelian variety for $\{\mathfrak\{p\}\}$ in a set of positive density, while if $X$ is of Mumford type, then $X_\{\mathfrak\{p\}\}$ is simple for almost all $\{\mathfrak\{p\}\}$. For a large class of abelian varieties with commutative absolute endomorphism ring, we give an explicit upper bound for the growth of the set of primes of non-simple reduction.},
affiliation = {Department of Mathematics Colorado State University Fort Collins, CO 80523},
author = {Achter, Jeffrey D.},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
month = {3},
number = {1},
pages = {41-55},
publisher = {Société Arithmétique de Bordeaux},
title = {Explicit bounds for split reductions of simple abelian varieties},
url = {http://eudml.org/doc/251138},
volume = {24},
year = {2012},
}
TY - JOUR
AU - Achter, Jeffrey D.
TI - Explicit bounds for split reductions of simple abelian varieties
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2012/3//
PB - Société Arithmétique de Bordeaux
VL - 24
IS - 1
SP - 41
EP - 55
AB - Let $X/K$ be an absolutely simple abelian variety over a number field; we study whether the reductions $X_{\mathfrak{p}}$ tend to be simple, too. We show that if $\operatorname{End}(X)$ is a definite quaternion algebra, then the reduction $X_{\mathfrak{p}}$ is geometrically isogenous to the self-product of an absolutely simple abelian variety for ${\mathfrak{p}}$ in a set of positive density, while if $X$ is of Mumford type, then $X_{\mathfrak{p}}$ is simple for almost all ${\mathfrak{p}}$. For a large class of abelian varieties with commutative absolute endomorphism ring, we give an explicit upper bound for the growth of the set of primes of non-simple reduction.
LA - eng
UR - http://eudml.org/doc/251138
ER -
References
top- Jeffrey D. Achter, Split reductions of simple abelian varieties, Math. Res. Lett. 16 (2009), no. 2, 199–213. Zbl1180.14046MR2496739
- Grzegorz Banaszak, Wojciech Gajda, and Piotr Krasoń, On the image of Galois -adic representations for abelian varieties of type III, Tohoku Math. J. (2) 62 (2010), no. 2, 163–189. MR2663452 Zbl1202.14042MR2663452
- Ching-Li Chai and Frans Oort, A note on the existence of absolutely simple Jacobians, J. Pure Appl. Algebra 155 (2001), no. 2-3, 115–120. MRMR1801409 (2002a:14020) Zbl1006.14006MR1801409
- Nick Chavdarov, The generic irreducibility of the numerator of the zeta function in a family of curves with large monodromy, Duke Math. J. 87 (1997), no. 1, 151–180. MR99d:11071 Zbl0941.14006MR1440067
- Gerd Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (1983), no. 3, 349–366. MRMR718935 (85g:11026a) Zbl0588.14026MR718935
- Patrick X. Gallagher, The number of conjugacy classes in a finite group, Math. Z. 118 (1970), 175–179. MRMR0276318 (43 #2065) Zbl0221.20006MR276318
- Nicholas M. Katz, Report on the irreducibility of -functions, Number Theory, Analysis and Geometry, Springer-Verlag, New York, 2012, pp. 321–353. Zbl1276.11147
- E. Kowalski, The large sieve and its applications, Cambridge Tracts in Mathematics, vol. 175, Cambridge University Press, Cambridge, 2008. MRMR2426239 (2009f:11123) Zbl1177.11080MR2426239
- M. J. Larsen and R. Pink, Abelian varieties, -adic representations, and -independence, Math. Ann. 302 (1995), no. 3, 561–579. MRMR1339927 (97e:14057) Zbl0867.14019MR1339927
- Michael J. Larsen, Maximality of Galois actions for compatible systems, Duke Math. J. 80 (1995), no. 3, 601–630. MRMR1370110 (97a:11090) Zbl0912.11026MR1370110
- Martin W. Liebeck and László Pyber, Upper bounds for the number of conjugacy classes of a finite group, J. Algebra 198 (1997), no. 2, 538–562. MRMR1489911 (99c:20023) Zbl0892.20017MR1489911
- D. Mumford, A note of Shimura’s paper “Discontinuous groups and abelian varieties”, Math. Ann. 181 (1969), 345–351. MRMR0248146 (40 #1400) Zbl0169.23301MR248146
- V. K. Murty and V. M. Patankar, Splitting of abelian varieties, IMRN 2008 (2008), Art. ID rnn033, 27 pages. Zbl1152.14043MR2426750
- Rutger Noot, Abelian varieties—Galois representation and properties of ordinary reduction, Compositio Math. 97 (1995), no. 1-2, 161–171, Special issue in honour of Frans Oort. MRMR1355123 (97a:11093) Zbl0868.14021MR1355123
- —, On Mumford’s families of abelian varieties, J. Pure Appl. Algebra 157 (2001), no. 1, 87–106. MRMR1809220 (2002a:14023) MR1809220
- Kenneth A. Ribet, Galois action on division points of Abelian varieties with real multiplications, Amer. J. Math. 98 (1976), no. 3, 751–804. MRMR0457455 (56 #15660) Zbl0348.14022MR457455
- Jean-Pierre Serre, Lettre à Ken Ribet 1/1/1981, Œuvres. Collected papers. IV, Springer-Verlag, Berlin, 2000, pp. 1–16. MRMR1730973 (2001e:01037) MR1730973
- —, Lettre à Ken Ribet 7/3/1986, Œuvres. Collected papers. IV, Springer-Verlag, Berlin, 2000, pp. 56–65. MRMR1730973 (2001e:01037)
- —, Lettre à Marie-France Vignéras 10/2/1986, Œuvres. Collected papers. IV, Springer-Verlag, Berlin, 2000, pp. 38–55. MRMR1730973 (2001e:01037)
- Goro Shimura, On analytic families of polarized abelian varieties and automorphic functions, Ann. of Math. (2) 78 (1963), 149–192. MRMR0156001 (27 #5934) Zbl0142.05402MR156001
- A. Silverberg, Fields of definition for homomorphisms of abelian varieties, J. Pure Appl. Algebra 77 (1992), no. 3, 253–262. MRMR1154704 (93f:14022) Zbl0808.14037MR1154704
- A. Silverberg and Yu. G. Zarhin, Connectedness extensions for abelian varieties, Math. Z. 228 (1998), no. 2, 387–403. MRMR1630512 (99d:11065) Zbl0938.14028MR1630512
- John Tate, Endomorphisms of abelian varieties over finite fields, Invent. Math. 2 (1966), 134–144. MRMR0206004 (34 #5829) Zbl0147.20303MR206004
- Adrian Vasiu, Some cases of the Mumford-Tate conjecture and Shimura varieties, Indiana Univ. Math. J. 57 (2008), 1–76. Zbl1173.11039MR2400251
- David Zywina, The large sieve and Galois representations, (2008). MR2712311
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.