Local exact controllability for the 1 -d compressible Navier-Stokes equations

Sylvain Ervedoza[1]

  • [1] CNRS Institut de Mathématiques de Toulouse UMR 5219 F-31062 Toulouse France Université de Toulouse UPS, INSA, INP, ISAE, UT1, UTM, IMT F-31062 Toulouse France

Séminaire Laurent Schwartz — EDP et applications (2011-2012)

  • Volume: 2011-2012, page 1-14
  • ISSN: 2266-0607

Abstract

top
In this talk, I will present a recent result obtained in [6] with O. Glass, S. Guerrero and J.-P. Puel on the local exact controllability of the 1 -d compressible Navier-Stokes equations. The goal of these notes is to give an informal presentation of this article and we refer the reader to it for extensive details.

How to cite

top

Ervedoza, Sylvain. "Local exact controllability for the $1$-d compressible Navier-Stokes equations." Séminaire Laurent Schwartz — EDP et applications 2011-2012 (2011-2012): 1-14. <http://eudml.org/doc/251153>.

@article{Ervedoza2011-2012,
abstract = {In this talk, I will present a recent result obtained in [6] with O. Glass, S. Guerrero and J.-P. Puel on the local exact controllability of the $1$-d compressible Navier-Stokes equations. The goal of these notes is to give an informal presentation of this article and we refer the reader to it for extensive details.},
affiliation = {CNRS Institut de Mathématiques de Toulouse UMR 5219 F-31062 Toulouse France Université de Toulouse UPS, INSA, INP, ISAE, UT1, UTM, IMT F-31062 Toulouse France},
author = {Ervedoza, Sylvain},
journal = {Séminaire Laurent Schwartz — EDP et applications},
keywords = {exact controllability; compressible Navier-Stokes equations},
language = {eng},
pages = {1-14},
publisher = {Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Local exact controllability for the $1$-d compressible Navier-Stokes equations},
url = {http://eudml.org/doc/251153},
volume = {2011-2012},
year = {2011-2012},
}

TY - JOUR
AU - Ervedoza, Sylvain
TI - Local exact controllability for the $1$-d compressible Navier-Stokes equations
JO - Séminaire Laurent Schwartz — EDP et applications
PY - 2011-2012
PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2011-2012
SP - 1
EP - 14
AB - In this talk, I will present a recent result obtained in [6] with O. Glass, S. Guerrero and J.-P. Puel on the local exact controllability of the $1$-d compressible Navier-Stokes equations. The goal of these notes is to give an informal presentation of this article and we refer the reader to it for extensive details.
LA - eng
KW - exact controllability; compressible Navier-Stokes equations
UR - http://eudml.org/doc/251153
ER -

References

top
  1. E.V. Amosova. Exact local controllability for the equations of viscous gas dynamics. Differentsial’nye Uravneniya, 47(12):1754–1772, 2011. Zbl1241.93006MR2963212
  2. S. Chowdhury, M. Ramaswamy, and J.-P. Raymond. Controllability and stabilizability of the linearized compressible Navier-Stokes in one dimension. Submitted, 2012. Zbl1257.93016
  3. J.-M. Coron. On the controllability of 2 -D incompressible perfect fluids. J. Math. Pures Appl. (9), 75(2):155–188, 1996. Zbl0848.76013MR1380673
  4. J.-M. Coron. Control and nonlinearity, volume 136 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2007. Zbl1140.93002MR2302744
  5. J.-M. Coron and A. V. Fursikov. Global exact controllability of the 2 D Navier-Stokes equations on a manifold without boundary. Russian J. Math. Phys., 4(4):429–448, 1996. Zbl0938.93030MR1470445
  6. S. Ervedoza, O. Glass, S. Guerrero, and J.-P. Puel. Local exact controllability for the 1 -D compressible Navier Stokes equation. Arch. Ration. Mech. Anal., to appear. Zbl06102063MR2968594
  7. E. Fernández-Cara, S. Guerrero, O. Yu. Imanuvilov, and J.-P. Puel. Local exact controllability of the Navier-Stokes system. J. Math. Pures Appl. (9), 83(12):1501–1542, 2004. Zbl1267.93020MR2103189
  8. A. V. Fursikov and O. Y. Imanuvilov. Controllability of evolution equations, volume 34 of Lecture Notes Series. Seoul National University Research Institute of Mathematics Global Analysis Research Center, Seoul, 1996. Zbl0862.49004MR1406566
  9. O. Glass. Exact boundary controllability of 3-D Euler equation. ESAIM Control Optim. Calc. Var., 5:1–44 (electronic), 2000. Zbl0940.93012MR1745685
  10. O. Glass. On the controllability of the 1-D isentropic Euler equation. J. Eur. Math. Soc. (JEMS), 9(3):427–486, 2007. Zbl1139.35014MR2314104
  11. M. González-Burgos, S. Guerrero, and J.-P. Puel. Local exact controllability to the trajectories of the Boussinesq system via a fictitious control on the divergence equation. Commun. Pure Appl. Anal., 8(1):311–333, 2009. Zbl1152.93005MR2449112
  12. S. Guerrero and O. Y. Imanuvilov. Remarks on global controllability for the Burgers equation with two control forces. Ann. Inst. H. Poincaré Anal. Non Linéaire, 24(6):897–906, 2007. Zbl1248.93024MR2371111
  13. O. Y. Imanuvilov. Remarks on exact controllability for the Navier-Stokes equations. ESAIM Control Optim. Calc. Var., 6:39–72 (electronic), 2001. Zbl0961.35104MR1804497
  14. O. Y. Imanuvilov and J.-P. Puel. On global controllability of 2-D Burgers equation. Discrete Contin. Dyn. Syst., 23(1-2):299–313, 2009. Zbl1158.93007MR2449080
  15. T.-T. Li and B.-P. Rao. Exact boundary controllability for quasi-linear hyperbolic systems. SIAM J. Control Optim., 41(6):1748–1755 (electronic), 2003. Zbl1032.35124MR1972532
  16. P. Martin, L. Rosier, and P. Rouchon. Null-controllability of a structurally damped wave equation with moving point control. Submitted, 2012. Zbl1304.35619
  17. A. Matsumura and T. Nishida. The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ., 20(1):67–104, 1980. Zbl0429.76040MR564670
  18. H. Nersisyan. Controllability of the 3D compressible Euler system. Comm. Partial Differential Equations, 36(9):1544–1564, 2011. Zbl1234.93016MR2825602
  19. L. Rosier and P. Rouchon. On the controllability of a wave equation with structural damping. Int. J. Tomogr. Stat., 5(W07):79–84, 2007. MR2393756

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.