Local exact controllability for the -d compressible Navier-Stokes equations
- [1] CNRS Institut de Mathématiques de Toulouse UMR 5219 F-31062 Toulouse France Université de Toulouse UPS, INSA, INP, ISAE, UT1, UTM, IMT F-31062 Toulouse France
Séminaire Laurent Schwartz — EDP et applications (2011-2012)
- Volume: 2011-2012, page 1-14
- ISSN: 2266-0607
Access Full Article
topAbstract
topHow to cite
topErvedoza, Sylvain. "Local exact controllability for the $1$-d compressible Navier-Stokes equations." Séminaire Laurent Schwartz — EDP et applications 2011-2012 (2011-2012): 1-14. <http://eudml.org/doc/251153>.
@article{Ervedoza2011-2012,
abstract = {In this talk, I will present a recent result obtained in [6] with O. Glass, S. Guerrero and J.-P. Puel on the local exact controllability of the $1$-d compressible Navier-Stokes equations. The goal of these notes is to give an informal presentation of this article and we refer the reader to it for extensive details.},
affiliation = {CNRS Institut de Mathématiques de Toulouse UMR 5219 F-31062 Toulouse France Université de Toulouse UPS, INSA, INP, ISAE, UT1, UTM, IMT F-31062 Toulouse France},
author = {Ervedoza, Sylvain},
journal = {Séminaire Laurent Schwartz — EDP et applications},
keywords = {exact controllability; compressible Navier-Stokes equations},
language = {eng},
pages = {1-14},
publisher = {Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Local exact controllability for the $1$-d compressible Navier-Stokes equations},
url = {http://eudml.org/doc/251153},
volume = {2011-2012},
year = {2011-2012},
}
TY - JOUR
AU - Ervedoza, Sylvain
TI - Local exact controllability for the $1$-d compressible Navier-Stokes equations
JO - Séminaire Laurent Schwartz — EDP et applications
PY - 2011-2012
PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2011-2012
SP - 1
EP - 14
AB - In this talk, I will present a recent result obtained in [6] with O. Glass, S. Guerrero and J.-P. Puel on the local exact controllability of the $1$-d compressible Navier-Stokes equations. The goal of these notes is to give an informal presentation of this article and we refer the reader to it for extensive details.
LA - eng
KW - exact controllability; compressible Navier-Stokes equations
UR - http://eudml.org/doc/251153
ER -
References
top- E.V. Amosova. Exact local controllability for the equations of viscous gas dynamics. Differentsial’nye Uravneniya, 47(12):1754–1772, 2011. Zbl1241.93006MR2963212
- S. Chowdhury, M. Ramaswamy, and J.-P. Raymond. Controllability and stabilizability of the linearized compressible Navier-Stokes in one dimension. Submitted, 2012. Zbl1257.93016
- J.-M. Coron. On the controllability of -D incompressible perfect fluids. J. Math. Pures Appl. (9), 75(2):155–188, 1996. Zbl0848.76013MR1380673
- J.-M. Coron. Control and nonlinearity, volume 136 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2007. Zbl1140.93002MR2302744
- J.-M. Coron and A. V. Fursikov. Global exact controllability of the D Navier-Stokes equations on a manifold without boundary. Russian J. Math. Phys., 4(4):429–448, 1996. Zbl0938.93030MR1470445
- S. Ervedoza, O. Glass, S. Guerrero, and J.-P. Puel. Local exact controllability for the -D compressible Navier Stokes equation. Arch. Ration. Mech. Anal., to appear. Zbl06102063MR2968594
- E. Fernández-Cara, S. Guerrero, O. Yu. Imanuvilov, and J.-P. Puel. Local exact controllability of the Navier-Stokes system. J. Math. Pures Appl. (9), 83(12):1501–1542, 2004. Zbl1267.93020MR2103189
- A. V. Fursikov and O. Y. Imanuvilov. Controllability of evolution equations, volume 34 of Lecture Notes Series. Seoul National University Research Institute of Mathematics Global Analysis Research Center, Seoul, 1996. Zbl0862.49004MR1406566
- O. Glass. Exact boundary controllability of 3-D Euler equation. ESAIM Control Optim. Calc. Var., 5:1–44 (electronic), 2000. Zbl0940.93012MR1745685
- O. Glass. On the controllability of the 1-D isentropic Euler equation. J. Eur. Math. Soc. (JEMS), 9(3):427–486, 2007. Zbl1139.35014MR2314104
- M. González-Burgos, S. Guerrero, and J.-P. Puel. Local exact controllability to the trajectories of the Boussinesq system via a fictitious control on the divergence equation. Commun. Pure Appl. Anal., 8(1):311–333, 2009. Zbl1152.93005MR2449112
- S. Guerrero and O. Y. Imanuvilov. Remarks on global controllability for the Burgers equation with two control forces. Ann. Inst. H. Poincaré Anal. Non Linéaire, 24(6):897–906, 2007. Zbl1248.93024MR2371111
- O. Y. Imanuvilov. Remarks on exact controllability for the Navier-Stokes equations. ESAIM Control Optim. Calc. Var., 6:39–72 (electronic), 2001. Zbl0961.35104MR1804497
- O. Y. Imanuvilov and J.-P. Puel. On global controllability of 2-D Burgers equation. Discrete Contin. Dyn. Syst., 23(1-2):299–313, 2009. Zbl1158.93007MR2449080
- T.-T. Li and B.-P. Rao. Exact boundary controllability for quasi-linear hyperbolic systems. SIAM J. Control Optim., 41(6):1748–1755 (electronic), 2003. Zbl1032.35124MR1972532
- P. Martin, L. Rosier, and P. Rouchon. Null-controllability of a structurally damped wave equation with moving point control. Submitted, 2012. Zbl1304.35619
- A. Matsumura and T. Nishida. The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ., 20(1):67–104, 1980. Zbl0429.76040MR564670
- H. Nersisyan. Controllability of the 3D compressible Euler system. Comm. Partial Differential Equations, 36(9):1544–1564, 2011. Zbl1234.93016MR2825602
- L. Rosier and P. Rouchon. On the controllability of a wave equation with structural damping. Int. J. Tomogr. Stat., 5(W07):79–84, 2007. MR2393756
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.