Quasi-periodic solutions of PDEs
- [1] Dipartimento di Matematica e Applicazioni “R. Caccioppoli" Università degli Studi Napoli Federico II Via Cintia, Monte S. Angelo I-80126, Napoli Italy
Séminaire Laurent Schwartz — EDP et applications (2011-2012)
- Volume: 2011-2012, page 1-11
- ISSN: 2266-0607
Access Full Article
topAbstract
topHow to cite
topBerti, Massimiliano. "Quasi-periodic solutions of PDEs." Séminaire Laurent Schwartz — EDP et applications 2011-2012 (2011-2012): 1-11. <http://eudml.org/doc/251155>.
@article{Berti2011-2012,
abstract = {The aim of this talk is to present some recent existence results about quasi-periodic solutions for PDEs like nonlinear wave and Schrödinger equations in $ \mathbb\{T\}^d $, $ d \ge 2 $, and the $1$-$d$ derivative wave equation. The proofs are based on both Nash-Moser implicit function theorems and KAM theory.},
affiliation = {Dipartimento di Matematica e Applicazioni “R. Caccioppoli" Università degli Studi Napoli Federico II Via Cintia, Monte S. Angelo I-80126, Napoli Italy},
author = {Berti, Massimiliano},
journal = {Séminaire Laurent Schwartz — EDP et applications},
keywords = {KAM for PDE; Nash-Moser theory; quasi-periodic solutions; small divisors; nonlinear Schrödinger and wave equation; infinite dimensional Hamiltonian systems},
language = {eng},
pages = {1-11},
publisher = {Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Quasi-periodic solutions of PDEs},
url = {http://eudml.org/doc/251155},
volume = {2011-2012},
year = {2011-2012},
}
TY - JOUR
AU - Berti, Massimiliano
TI - Quasi-periodic solutions of PDEs
JO - Séminaire Laurent Schwartz — EDP et applications
PY - 2011-2012
PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2011-2012
SP - 1
EP - 11
AB - The aim of this talk is to present some recent existence results about quasi-periodic solutions for PDEs like nonlinear wave and Schrödinger equations in $ \mathbb{T}^d $, $ d \ge 2 $, and the $1$-$d$ derivative wave equation. The proofs are based on both Nash-Moser implicit function theorems and KAM theory.
LA - eng
KW - KAM for PDE; Nash-Moser theory; quasi-periodic solutions; small divisors; nonlinear Schrödinger and wave equation; infinite dimensional Hamiltonian systems
UR - http://eudml.org/doc/251155
ER -
References
top- Bambusi D., Berti M., Magistrelli E., Degenerate KAM theory for partial differential equations, J. Differential Equations 250, 3379-3397, 2011. Zbl1213.37103MR2772395
- Bambusi D., Delort J.M., Grebért B., Szeftel J., Almost global existence for Hamiltonian semilinear Klein-Gordon equations with small Cauchy data on Zoll manifolds, Comm. Pure Appl. Math. 60, 11, 1665-1690, 2007. Zbl1170.35481MR2349351
- Berti M., Nonlinear Oscillations of Hamiltonian PDEs, Progr. Nonlinear Differential Equations Appl. 74, H. Brézis, ed., Birkhäuser, Boston, 1-181, 2008. Zbl1146.35002MR2345400
- Berti M., Biasco L., Branching of Cantor manifolds of elliptic tori and applications to PDEs, Comm. Math. Phys, 305, 3, 741-796, 2011. Zbl1230.37092MR2819413
- Berti M., Biasco L., Procesi M. KAM theory for the Hamiltonian derivative wave equation, preprint 2011. Zbl1304.37055
- Berti M., Bolle P., Quasi-periodic solutions with Sobolev regularity of NLS on with a multiplicative potential, to appear on the Journal European Math. Society. Zbl1260.35196MR2998835
- Berti M., Bolle P., Quasi-periodic solutions of nonlinear Schrödinger equations on , Rend. Lincei Mat. Appl. 22, 223-236, 2011. Zbl1230.35126MR2813578
- Berti M., Bolle P., Sobolev quasi periodic solutions of multidimensional wave equations with a multiplicative potential, preprint 2012. Zbl1262.35015MR2967117
- Berti M., Bolle P., Procesi M., An abstract Nash-Moser theorem with parameters and applications to PDEs, Ann. I. H. Poincaré, 27, 377-399, 2010. Zbl1203.47038MR2580515
- Berti M., Procesi M., Nonlinear wave and Schrödinger equations on compact Lie groups and homogeneous spaces, Duke Math. J., 159, 3, 479-538, 2011. Zbl1260.37045MR2831876
- Bourgain J., Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE, Internat. Math. Res. Notices, no. 11, 1994. Zbl0817.35102MR1316975
- Bourgain J., On Melnikov’s persistency problem, Internat. Math. Res. Letters, 4, 445 - 458, 1997. Zbl0897.58020MR1470416
- Bourgain J., Quasi-periodic solutions of Hamiltonian perturbations of linear Schrödinger equations, Annals of Math. 148, 363-439, 1998. Zbl0928.35161MR1668547
- Bourgain J., Periodic solutions of nonlinear wave equations, Harmonic analysis and partial differential equations, 69–97, Chicago Lectures in Math., Univ. Chicago Press, 1999. Zbl0976.35041MR1743856
- Bourgain J., Green’s function estimates for lattice Schrödinger operators and applications, Annals of Mathematics Studies 158, Princeton University Press, Princeton, 2005. Zbl1137.35001MR2100420
- Colliander J., Keel M., Staffilani G., Takaoka H., Tao T., Weakly turbolent solutions for the cubic defocusing nonlinear Schrödinger equation, 181, 1, 39-113, Inventiones Math., 2010. Zbl1197.35265MR2651381
- Craig W., Problèmes de petits diviseurs dans les équations aux dérivées partielles, Panoramas et Synthèses, 9, Société Mathématique de France, Paris, 2000. Zbl0977.35014MR1804420
- Craig W., Wayne C. E., Newton’s method and periodic solutions of nonlinear wave equation, Comm. Pure Appl. Math. 46, 1409-1498, 1993. Zbl0794.35104MR1239318
- Eliasson L.H., Perturbations of stable invariant tori for Hamiltonian systems, Ann. Sc. Norm. Sup. Pisa., 15, 115-147, 1988. Zbl0685.58024MR1001032
- Eliasson L. H., Kuksin S., KAM for nonlinear Schrödinger equation, Annals of Math., 172, 371-435, 2010. Zbl1201.35177MR2680422
- Geng J., You J., A KAM theorem for Hamiltonian partial differential equations in higher dimensional spaces, Comm. Math. Phys. 262, 343-372, 2006. Zbl1103.37047MR2200264
- Grebert B., Thomann L., KAM for the quantum harmonic oscillator, Comm. Math. Phys. 307, 2, 383-427, 2011. Zbl1250.81033MR2837120
- Kappeler T., Pöschel J., KAM and KdV, Springer, 2003.
- Kuksin S., Hamiltonian perturbations of infinite-dimensional linear systems with imaginary spectrum, Funktsional Anal. i Prilozhen. 2, 22-37, 95, 1987. Zbl0631.34069MR911772
- Kuksin S., Analysis of Hamiltonian PDEs, Oxford Lecture series in Math. and its applications, 19, Oxford University Press, 2000. Zbl0960.35001MR1857574
- Liu J., Yuan X., A KAM Theorem for Hamiltonian Partial Differential Equations with Unbounded Perturbations, Comm. Math. Phys, 307 (3), 629-673, 2011. Zbl1247.37082MR2842962
- Lojasiewicz S., Zehnder E., An inverse function theorem in Fréchet-spaces, J. Funct. Anal. 33, 165-174, 1979. Zbl0431.46032MR546504
- Pöschel J., A KAM-Theorem for some nonlinear PDEs, Ann. Scuola Norm. Sup. Pisa, Cl. Sci., 23, 119-148, 1996. Zbl0870.34060MR1401420
- Procesi C., Procesi M., A normal form for the Schrödinger equation with analytic non-linearities, to appear on Comm. Math.Phys. Zbl1277.35318MR2917174
- Wang W. M., Supercritical nonlinear Schrödinger equations I: quasi-periodic solutions, preprint 2010.
- Wayne E., Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory, Comm. Math. Phys. 127, 479-528, 1990. Zbl0708.35087MR1040892
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.