Quasi-periodic solutions of PDEs

Massimiliano Berti[1]

  • [1] Dipartimento di Matematica e Applicazioni “R. Caccioppoli" Università degli Studi Napoli Federico II Via Cintia, Monte S. Angelo I-80126, Napoli Italy

Séminaire Laurent Schwartz — EDP et applications (2011-2012)

  • Volume: 2011-2012, page 1-11
  • ISSN: 2266-0607

Abstract

top
The aim of this talk is to present some recent existence results about quasi-periodic solutions for PDEs like nonlinear wave and Schrödinger equations in 𝕋 d , d 2 , and the 1 - d derivative wave equation. The proofs are based on both Nash-Moser implicit function theorems and KAM theory.

How to cite

top

Berti, Massimiliano. "Quasi-periodic solutions of PDEs." Séminaire Laurent Schwartz — EDP et applications 2011-2012 (2011-2012): 1-11. <http://eudml.org/doc/251155>.

@article{Berti2011-2012,
abstract = {The aim of this talk is to present some recent existence results about quasi-periodic solutions for PDEs like nonlinear wave and Schrödinger equations in $ \mathbb\{T\}^d $, $ d \ge 2 $, and the $1$-$d$ derivative wave equation. The proofs are based on both Nash-Moser implicit function theorems and KAM theory.},
affiliation = {Dipartimento di Matematica e Applicazioni “R. Caccioppoli" Università degli Studi Napoli Federico II Via Cintia, Monte S. Angelo I-80126, Napoli Italy},
author = {Berti, Massimiliano},
journal = {Séminaire Laurent Schwartz — EDP et applications},
keywords = {KAM for PDE; Nash-Moser theory; quasi-periodic solutions; small divisors; nonlinear Schrödinger and wave equation; infinite dimensional Hamiltonian systems},
language = {eng},
pages = {1-11},
publisher = {Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Quasi-periodic solutions of PDEs},
url = {http://eudml.org/doc/251155},
volume = {2011-2012},
year = {2011-2012},
}

TY - JOUR
AU - Berti, Massimiliano
TI - Quasi-periodic solutions of PDEs
JO - Séminaire Laurent Schwartz — EDP et applications
PY - 2011-2012
PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2011-2012
SP - 1
EP - 11
AB - The aim of this talk is to present some recent existence results about quasi-periodic solutions for PDEs like nonlinear wave and Schrödinger equations in $ \mathbb{T}^d $, $ d \ge 2 $, and the $1$-$d$ derivative wave equation. The proofs are based on both Nash-Moser implicit function theorems and KAM theory.
LA - eng
KW - KAM for PDE; Nash-Moser theory; quasi-periodic solutions; small divisors; nonlinear Schrödinger and wave equation; infinite dimensional Hamiltonian systems
UR - http://eudml.org/doc/251155
ER -

References

top
  1. Bambusi D., Berti M., Magistrelli E., Degenerate KAM theory for partial differential equations, J. Differential Equations 250, 3379-3397, 2011. Zbl1213.37103MR2772395
  2. Bambusi D., Delort J.M., Grebért B., Szeftel J., Almost global existence for Hamiltonian semilinear Klein-Gordon equations with small Cauchy data on Zoll manifolds, Comm. Pure Appl. Math. 60, 11, 1665-1690, 2007. Zbl1170.35481MR2349351
  3. Berti M., Nonlinear Oscillations of Hamiltonian PDEs, Progr. Nonlinear Differential Equations Appl. 74, H. Brézis, ed., Birkhäuser, Boston, 1-181, 2008. Zbl1146.35002MR2345400
  4. Berti M., Biasco L., Branching of Cantor manifolds of elliptic tori and applications to PDEs, Comm. Math. Phys, 305, 3, 741-796, 2011. Zbl1230.37092MR2819413
  5. Berti M., Biasco L., Procesi M. KAM theory for the Hamiltonian derivative wave equation, preprint 2011. Zbl1304.37055
  6. Berti M., Bolle P., Quasi-periodic solutions with Sobolev regularity of NLS on 𝕋 d with a multiplicative potential, to appear on the Journal European Math. Society. Zbl1260.35196MR2998835
  7. Berti M., Bolle P., Quasi-periodic solutions of nonlinear Schrödinger equations on 𝕋 d , Rend. Lincei Mat. Appl. 22, 223-236, 2011. Zbl1230.35126MR2813578
  8. Berti M., Bolle P., Sobolev quasi periodic solutions of multidimensional wave equations with a multiplicative potential, preprint 2012. Zbl1262.35015MR2967117
  9. Berti M., Bolle P., Procesi M., An abstract Nash-Moser theorem with parameters and applications to PDEs, Ann. I. H. Poincaré, 27, 377-399, 2010. Zbl1203.47038MR2580515
  10. Berti M., Procesi M., Nonlinear wave and Schrödinger equations on compact Lie groups and homogeneous spaces, Duke Math. J., 159, 3, 479-538, 2011. Zbl1260.37045MR2831876
  11. Bourgain J., Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE, Internat. Math. Res. Notices, no. 11, 1994. Zbl0817.35102MR1316975
  12. Bourgain J., On Melnikov’s persistency problem, Internat. Math. Res. Letters, 4, 445 - 458, 1997. Zbl0897.58020MR1470416
  13. Bourgain J., Quasi-periodic solutions of Hamiltonian perturbations of 2 D linear Schrödinger equations, Annals of Math. 148, 363-439, 1998. Zbl0928.35161MR1668547
  14. Bourgain J., Periodic solutions of nonlinear wave equations, Harmonic analysis and partial differential equations, 69–97, Chicago Lectures in Math., Univ. Chicago Press, 1999. Zbl0976.35041MR1743856
  15. Bourgain J., Green’s function estimates for lattice Schrödinger operators and applications, Annals of Mathematics Studies 158, Princeton University Press, Princeton, 2005. Zbl1137.35001MR2100420
  16. Colliander J., Keel M., Staffilani G., Takaoka H., Tao T., Weakly turbolent solutions for the cubic defocusing nonlinear Schrödinger equation, 181, 1, 39-113, Inventiones Math., 2010. Zbl1197.35265MR2651381
  17. Craig W., Problèmes de petits diviseurs dans les équations aux dérivées partielles, Panoramas et Synthèses, 9, Société Mathématique de France, Paris, 2000. Zbl0977.35014MR1804420
  18. Craig W., Wayne C. E., Newton’s method and periodic solutions of nonlinear wave equation, Comm. Pure Appl. Math. 46, 1409-1498, 1993. Zbl0794.35104MR1239318
  19. Eliasson L.H., Perturbations of stable invariant tori for Hamiltonian systems, Ann. Sc. Norm. Sup. Pisa., 15, 115-147, 1988. Zbl0685.58024MR1001032
  20. Eliasson L. H., Kuksin S., KAM for nonlinear Schrödinger equation, Annals of Math., 172, 371-435, 2010. Zbl1201.35177MR2680422
  21. Geng J., You J., A KAM theorem for Hamiltonian partial differential equations in higher dimensional spaces, Comm. Math. Phys. 262, 343-372, 2006. Zbl1103.37047MR2200264
  22. Grebert B., Thomann L., KAM for the quantum harmonic oscillator, Comm. Math. Phys. 307, 2, 383-427, 2011. Zbl1250.81033MR2837120
  23. Kappeler T., Pöschel J., KAM and KdV, Springer, 2003. 
  24. Kuksin S., Hamiltonian perturbations of infinite-dimensional linear systems with imaginary spectrum, Funktsional Anal. i Prilozhen. 2, 22-37, 95, 1987. Zbl0631.34069MR911772
  25. Kuksin S., Analysis of Hamiltonian PDEs, Oxford Lecture series in Math. and its applications, 19, Oxford University Press, 2000. Zbl0960.35001MR1857574
  26. Liu J., Yuan X., A KAM Theorem for Hamiltonian Partial Differential Equations with Unbounded Perturbations, Comm. Math. Phys, 307 (3), 629-673, 2011. Zbl1247.37082MR2842962
  27. Lojasiewicz S., Zehnder E., An inverse function theorem in Fréchet-spaces, J. Funct. Anal. 33, 165-174, 1979. Zbl0431.46032MR546504
  28. Pöschel J., A KAM-Theorem for some nonlinear PDEs, Ann. Scuola Norm. Sup. Pisa, Cl. Sci., 23, 119-148, 1996. Zbl0870.34060MR1401420
  29. Procesi C., Procesi M., A normal form for the Schrödinger equation with analytic non-linearities, to appear on Comm. Math.Phys. Zbl1277.35318MR2917174
  30. Wang W. M., Supercritical nonlinear Schrödinger equations I: quasi-periodic solutions, preprint 2010. 
  31. Wayne E., Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory, Comm. Math. Phys. 127, 479-528, 1990. Zbl0708.35087MR1040892

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.