Bounds for KdV and the 1-d cubic NLS equation in rough function spaces
Herbert Koch[1]
- [1] Mathematisches Institut Universität Bonn
Séminaire Laurent Schwartz — EDP et applications (2011-2012)
- Volume: 2011-2012, page 1-10
- ISSN: 2266-0607
Access Full Article
topAbstract
topHow to cite
topKoch, Herbert. "Bounds for KdV and the 1-d cubic NLS equation in rough function spaces." Séminaire Laurent Schwartz — EDP et applications 2011-2012 (2011-2012): 1-10. <http://eudml.org/doc/251156>.
@article{Koch2011-2012,
abstract = {We consider the cubic Nonlinear Schrödinger Equation (NLS) and the Korteweg-de Vries equation in one space dimension. We prove that the solutions of NLS satisfy a-priori local in time $H^\{s\}$ bounds in terms of the $H^s$ size of the initial data for $s \ge -\frac\{1\}\{4\}$ (joint work with D. Tataru, [15, 14]) , and the solutions to KdV satisfy global a priori estimate in $H^\{-1\}$ (joint work with T. Buckmaster [2]).},
affiliation = {Mathematisches Institut Universität Bonn},
author = {Koch, Herbert},
journal = {Séminaire Laurent Schwartz — EDP et applications},
keywords = {nonlinear Schrödinger equation; Korteweg-de Vries equation},
language = {eng},
pages = {1-10},
publisher = {Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Bounds for KdV and the 1-d cubic NLS equation in rough function spaces},
url = {http://eudml.org/doc/251156},
volume = {2011-2012},
year = {2011-2012},
}
TY - JOUR
AU - Koch, Herbert
TI - Bounds for KdV and the 1-d cubic NLS equation in rough function spaces
JO - Séminaire Laurent Schwartz — EDP et applications
PY - 2011-2012
PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2011-2012
SP - 1
EP - 10
AB - We consider the cubic Nonlinear Schrödinger Equation (NLS) and the Korteweg-de Vries equation in one space dimension. We prove that the solutions of NLS satisfy a-priori local in time $H^{s}$ bounds in terms of the $H^s$ size of the initial data for $s \ge -\frac{1}{4}$ (joint work with D. Tataru, [15, 14]) , and the solutions to KdV satisfy global a priori estimate in $H^{-1}$ (joint work with T. Buckmaster [2]).
LA - eng
KW - nonlinear Schrödinger equation; Korteweg-de Vries equation
UR - http://eudml.org/doc/251156
ER -
References
top- S. A. Akhmanov, R.V. Khokhlov, and A. P. Sukhorukov. Self-focusing and self-trapping of intense light beams in a nonlinear medium. Zh. Eksp. Teor. Fiz., 50:1537–1549, 1966.
- T. Buckmaster and H. Koch. The korteweg-de-vries equation at regularity. arXiv:1112.4657, 2011. Zbl1331.35300
- Michael Christ, James Colliander, and Terrence Tao. A priori bounds and weak solutions for the nonlinear Schrödinger equation in Sobolev spaces of negative order. Preprint arXiv:math.AP/0612457. Zbl1136.35087
- Michael Christ, James Colliander, and Terrence Tao. Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations. Amer. J. Math., 125(6):1235–1293, 2003. Zbl1048.35101MR2018661
- P. Deift and X. Zhou. A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation. Ann. of Math. (2), 137(2):295–368, 1993. Zbl0771.35042MR1207209
- E. Grenier. Semiclassical limit of the nonlinear Schrödinger equation in small time. Proc. Amer. Math. Soc., 126(2):523–530, 1998. Zbl0910.35115MR1425123
- Zihua Guo. Global well-posedness of Korteweg-de Vries equation in . J. Math. Pures Appl. (9), 91(6):583–597, 2009. Zbl1173.35110MR2531556
- Shan Jin, C. David Levermore, and David W. McLaughlin. The semiclassical limit of the defocusing NLS hierarchy. Comm. Pure Appl. Math., 52(5):613–654, 1999. Zbl0935.35148MR1670048
- S. Kamvissis. Long time behavior for semiclassical NLS. Appl. Math. Lett., 12(8):35–57, 1999. Zbl0978.35061MR1751356
- Spyridon Kamvissis, Kenneth D. T.-R. McLaughlin, and Peter D. Miller. Semiclassical soliton ensembles for the focusing nonlinear Schrödinger equation, volume 154 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2003. Zbl1057.35063MR1999840
- T. Kappeler and P. Topalov. Global wellposedness of KdV in . Duke Math. J., 135(2):327–360, 2006. Zbl1106.35081MR2267286
- Thomas Kappeler, Peter Perry, Mikhail Shubin, and Peter Topalov. The Miura map on the line. Int. Math. Res. Not., (50):3091–3133, 2005. Zbl1089.35058MR2189502
- Carlos E. Kenig, Gustavo Ponce, and Luis Vega. On the ill-posedness of some canonical dispersive equations. Duke Math. J., 106(3):617–633, 2001. Zbl1034.35145MR1813239
- H. Koch and D. Tataru. Energy and local energy bounds for the 1-d cubic NLS equation in . arxiv:1012.0148, 2010.
- Herbert Koch and Daniel Tataru. A priori bounds for the 1D cubic NLS in negative Sobolev spaces. Int. Math. Res. Not. IMRN, 16:Art. ID rnm053, 36, 2007. Zbl1169.35055MR2353092
- Yvan Martel and Frank Merle. Asymptotic stability of solitons for subcritical generalized KdV equations. Arch. Ration. Mech. Anal., 157(3):219–254, 2001. Zbl0981.35073MR1826966
- F. Merle and L. Vega. stability of solitons for KdV equation. Int. Math. Res. Not., (13):735–753, 2003. Zbl1022.35061MR1949297
- Luc Molinet. A note on ill posedness for the KdV equation. Differential Integral Equations, 24(7-8):759–765, 2011. Zbl1249.35292MR2830706
- Junkichi Satsuma and Nobuo Yajima. Initial value problems of one-dimensional self-modulation of nonlinear waves in dispersive media. Progr. Theoret. Phys. Suppl. No. 55, pages 284–306, 1974. MR463733
- Laurent Thomann. Instabilities for supercritical Schrödinger equations in analytic manifolds. J. Differential Equations, 245(1):249–280, 2008. Zbl1157.35107MR2422717
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.