Un résumé de la théorie variationnelle de la rupture

Gilles A. Francfort[1]

  • [1] Institut LAGA, Université Paris-Nord & Institut Universitaire de France 99, avenue Jean-Baptiste Clément 93430 Villetaneuse France

Séminaire Laurent Schwartz — EDP et applications (2011-2012)

  • page 1-11
  • ISSN: 2266-0607

How to cite

top

Francfort, Gilles A.. "Un résumé de la théorie variationnelle de la rupture." Séminaire Laurent Schwartz — EDP et applications (2011-2012): 1-11. <http://eudml.org/doc/251157>.

@article{Francfort2011-2012,
affiliation = {Institut LAGA, Université Paris-Nord & Institut Universitaire de France 99, avenue Jean-Baptiste Clément 93430 Villetaneuse France},
author = {Francfort, Gilles A.},
journal = {Séminaire Laurent Schwartz — EDP et applications},
language = {fre},
pages = {1-11},
publisher = {Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Un résumé de la théorie variationnelle de la rupture},
url = {http://eudml.org/doc/251157},
year = {2011-2012},
}

TY - JOUR
AU - Francfort, Gilles A.
TI - Un résumé de la théorie variationnelle de la rupture
JO - Séminaire Laurent Schwartz — EDP et applications
PY - 2011-2012
PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
SP - 1
EP - 11
LA - fre
UR - http://eudml.org/doc/251157
ER -

References

top
  1. L. Ambrosio, N. Fusco & D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford University Press, Oxford (2000). Zbl0957.49001MR1857292
  2. L. Ambrosio & V.M. Tortorelli, Approximation of functionals depending on jumps by elliptic functionals via Γ -convergence, Comm. Pure Appl. Math. 43 (1990), 999-1036. Zbl0722.49020MR1075076
  3. M. Amestoy & J.-B. Leblond, Crack paths in plane situation – II, Detailed form of the expansion of the stress intensity factors, Int. J. Solids Stuct. 29 (1989), 465–501. Zbl0755.73072MR1138337
  4. H.-A. Bahr, H.-J. Weiss, H.G. Maschke & F. Meissner, Multiple crack propagation in a strip caused by thermal shock, Theoretical and Applied Fracture Mechanics 10 (1988), 219–226. 
  5. G.I. Barenblatt, The mathematical theory of equilibrium cracks in brittle fracture, dans : Adv. Appl. Mech., Vol. 7, Academic Press, New York (1962), 55–129. MR149728
  6. B. Bourdin, G. A. Francfort & J.-J. Marigo, The Variational Approach to Fracture, Springer, New York (2008). Zbl1176.74018MR2473620
  7. D. Bucur & N. Varchon, Boundary variation for a Neumann problem, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 29 (2000), 807–821. Zbl1072.35063MR1822408
  8. A. Braides, G. Dal Maso & A. Garroni, Variational formulation of softening phenomena in fracture mechanics : the one dimensional case, Arch. Rat. Mech. Anal. 146 (1999), 23–58. Zbl0945.74006MR1682660
  9. A. Chambolle, A density result in two-dimensional linearized elasticity, and applications, Arch. Rational Mech. Anal. 167 (2003), 211–233. Zbl1030.74007MR1978582
  10. A. Chambolle, An approximation result for special functions with bounded variations, J. Math Pures Appl. 83 (2004), 929–954. Zbl1084.49038MR2074682
  11. A. Chambolle & F. Doveri, Continuity of Neumann linear elliptic problems on varying two-dimensional bounded open sets, Comm. Partial Differential Equations 22 (1997), 811–840. Zbl0901.35019MR1452169
  12. A. Chambolle, G. A. Francfort & J.-J. Marigo, Revisiting Energy Release Rates in Brittle Fracture, J. Nonlinear Sci. 20 (2010), 395–424. Zbl1211.74183MR2665275
  13. G. Dal Maso, G. A. Francfort & R. Toader, Quasistatic crack growth in nonlinear elasticity, Arch. Rational Mech. Anal. 176 (2005), 165–225. Zbl1064.74150MR2186036
  14. G. Dal Maso & G. Lazzaroni, Quasistatic crack growth in finite elasticity with non-interpenetration, Ann. Inst. H. Poincaré Anal. Non Linéaire 27 (2010), 257–290. Zbl1188.35205MR2580510
  15. G. Dal Maso & R. Toader, A Model for the Quasi-Static Growth of Brittle Fractures : Existence and Approximation Results, Arch. Rational Mech. Anal. 162 (2002), 101–135. Zbl1042.74002MR1897378
  16. G. A. Francfort & C. J. Larsen, Existence and convergence for quasi-static evolution in brittle fracture, Commun. Pur. Appl. Math. 56 (2003), 1465–1500. Zbl1068.74056MR1988896
  17. G. A. Francfort & J.-J. Marigo, Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids 46 (1998), 1319–1342. Zbl0966.74060MR1633984
  18. A.A. Griffith, The phenomena of rupture and flow in solids, Phil. Trans. Roy. Soc. London CCXXI-A (1921), 163–198. 
  19. A. Mielke, Evolution of rate-independent systems, dans : Evolutionary equations. Vol. II, Dafermos, A. and Feireisl, E., eds., Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam (2005), 41–559. Zbl1120.47062MR2182832

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.