Boundary variation for a Neumann problem

Dorin Bucur; Nicolas Varchon

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2000)

  • Volume: 29, Issue: 4, page 807-821
  • ISSN: 0391-173X

How to cite

top

Bucur, Dorin, and Varchon, Nicolas. "Boundary variation for a Neumann problem." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 29.4 (2000): 807-821. <http://eudml.org/doc/84428>.

@article{Bucur2000,
author = {Bucur, Dorin, Varchon, Nicolas},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {4},
pages = {807-821},
publisher = {Scuola normale superiore},
title = {Boundary variation for a Neumann problem},
url = {http://eudml.org/doc/84428},
volume = {29},
year = {2000},
}

TY - JOUR
AU - Bucur, Dorin
AU - Varchon, Nicolas
TI - Boundary variation for a Neumann problem
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2000
PB - Scuola normale superiore
VL - 29
IS - 4
SP - 807
EP - 821
LA - eng
UR - http://eudml.org/doc/84428
ER -

References

top
  1. [1] J. Baxter — G. Dal Maso — U. Mosco, Stopping times and r-convergence, Trans. American Math. Soc.303, 1, September (1987), 1-38. Zbl0627.60071MR896006
  2. [2] M. Bellieud — G. Bouchitté, Homogénéisation de problèmes eliptiques dégénérés, C. R. Acad. Sci. Paris, Sér. I Math.327 (1988), 787-792. Zbl0920.35024MR1659998
  3. [3] M. Briane, Homogenization of a nonperiodic material, J. Math. Pures Appl. (9) 73 (1994), no. 1, 47-66. Zbl0835.35016MR1260600
  4. [4] D. Bucur, Shape analysis for Nonsmooth Elliptic Operators, Appl. Math. Lett.9 No. 3 (1996), 11-16. Zbl0874.49035MR1385991
  5. [5] D. Bucur — P. Trebeschi, Shape optimization problem governed by nonlinear state equation" Proc. Roy. Soc. Edinburgh128A (1998), p. 945-963. Zbl0918.49030MR1642112
  6. [6] D. Bucur — N. Varchon, A duality approach for the boundary variation for the Neumann problem, Preprint Université de Besançon, 14/ 2000. Zbl0961.35030MR1951783
  7. [7] D. Bucur — J.P. Zolésio, Continuité par rapport au domaine dans le problème de Neumann, C. R. Acad. Sci. Paris Sér. I Math.319 (1994), p. 57-60. Zbl0805.35010MR1285898
  8. [8] D. Bucur — J.P. Zolésio, N-Dimensional Shape Optimization under Capacitary Constraints, J. Differential Equations123 (1995), No. 2, 504-522. Zbl0847.49029MR1362884
  9. [9] D. Bucur — J.P. Zolésio, Boundary Optimization under Pseudo Curvature Constraint, Annali Scuola Norm. Sup. Pisa Cl. Sci. (4), XXIII, Fasc. 4, (1996), p. 681-699. Zbl0889.49026MR1469570
  10. [10] A. Chambolle — F. Doveri, Continuity of Neumann linear elliptic problems on varying two-dimensional bounded open sets., Comm. Partial Differential Equations22, No. 5-6 (1997), 811-840. Zbl0901.35019MR1452169
  11. [11] A. Chambert-Loir — S. Fermigier — V. Maillot, "Exercices de mathématiques pour l'agrégation", Analyse 1, 2e édition, Masson, 1997. Zbl0865.00011MR1446001
  12. [12] D. Chenais, On the existence of a solution in a domain identification problem, J. Math. Anal. Appl., 52 (1975), 189-289. Zbl0317.49005MR385666
  13. [13] G. Cortesani, Asymptotic behaviour of a sequence of Neumann problems, Comm. Partial Differential Equations22, No.9-10 (1997), 1691-1729. Zbl0895.35011MR1469587
  14. [14] T. Del Vecchio, The thick Neumann's sieve, Ann. Mat. Pura Appl. (4) 147 (1987), 363-402. Zbl0635.35021MR916715
  15. [15] L.C. Evans — R.F. Gariepy, "Measure Theory and Fine Properties of Functions", CRC Press, Inc.1992. Zbl0804.28001MR1158660
  16. [16] J. Heinonen — T. Kilpelainen — O. Martio, "Nonlinear Potential Theory of Degenerate Elliptic Equations", Clarendon Press, Oxford, New York, Tokyo, 1993. Zbl0780.31001MR1207810
  17. [17] E. Ya. Khruslov — G.I. Vorobceva, Averaging of the Neumann problem for higher-order elliptic operators, Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki1997, no. 4, 43-47. Zbl0923.35017MR1491510
  18. [18] F. Murat, On the Neumann sieve, in A. Marino et al., editor, Nonlinear Variational Problems, 127 in Res. Notes in Math., Pitman1985, 24-32. Zbl0586.35037MR807534
  19. [19] Ch.POMMERENKE, "Boundary Behaviour of Conformal Maps", Springer-Verlag, Berlin, 1992. Zbl0762.30001MR1217706
  20. [20] W. Rudin, "Analyse réelle et complexe", Masson, Paris, 1975. Zbl1147.26300MR662565
  21. [21] V. Sverak, On optimal shape design, J. Math. Pures Appl.72 (1993), 537-551. Zbl0849.49021MR1249408

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.