Hermite basis diagonalization for the non-cutoff radially symmetric linearized Boltzmann operator
N. Lerner[1]; Y. Morimoto[2]; K. Pravda-Starov[3]; C.-J. Xu[4]
- [1] Institut de Mathématiques de Jussieu Université Pierre et Marie Curie (Paris VI) 4 Place Jussieu 75252 Paris cedex 05 France
- [2] Graduate School of Human and Environmental Studies Kyoto University Kyoto 606-8501 Japan
- [3] Université de Cergy-Pontoise CNRS UMR 8088 Département de Mathématiques 95000 Cergy-Pontoise France
- [4] School of Mathematics Wuhan university 430072 Wuhan P.R. China and Université de Rouen CNRS UMR 6085 Département de Mathématiques 76801 Saint-Etienne du Rouvray France
Séminaire Laurent Schwartz — EDP et applications (2011-2012)
- Volume: 2011-2012, page 1-10
- ISSN: 2266-0607
Access Full Article
topAbstract
topHow to cite
topLerner, N., et al. "Hermite basis diagonalization for the non-cutoff radially symmetric linearized Boltzmann operator." Séminaire Laurent Schwartz — EDP et applications 2011-2012 (2011-2012): 1-10. <http://eudml.org/doc/251161>.
@article{Lerner2011-2012,
abstract = {We provide some new explicit expressions for the linearized non-cutoff radially symmetric Boltzmann operator with Maxwellian molecules, proving that this operator is a simple function of the standard harmonic oscillator. A detailed article is available on arXiv [15].},
affiliation = {Institut de Mathématiques de Jussieu Université Pierre et Marie Curie (Paris VI) 4 Place Jussieu 75252 Paris cedex 05 France; Graduate School of Human and Environmental Studies Kyoto University Kyoto 606-8501 Japan; Université de Cergy-Pontoise CNRS UMR 8088 Département de Mathématiques 95000 Cergy-Pontoise France; School of Mathematics Wuhan university 430072 Wuhan P.R. China and Université de Rouen CNRS UMR 6085 Département de Mathématiques 76801 Saint-Etienne du Rouvray France},
author = {Lerner, N., Morimoto, Y., Pravda-Starov, K., Xu, C.-J.},
journal = {Séminaire Laurent Schwartz — EDP et applications},
keywords = {non-cutoff Boltzmann equation; non-cutoff Kac equation; spectral analysis; microlocal analysis; harmonic oscillator.},
language = {eng},
pages = {1-10},
publisher = {Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Hermite basis diagonalization for the non-cutoff radially symmetric linearized Boltzmann operator},
url = {http://eudml.org/doc/251161},
volume = {2011-2012},
year = {2011-2012},
}
TY - JOUR
AU - Lerner, N.
AU - Morimoto, Y.
AU - Pravda-Starov, K.
AU - Xu, C.-J.
TI - Hermite basis diagonalization for the non-cutoff radially symmetric linearized Boltzmann operator
JO - Séminaire Laurent Schwartz — EDP et applications
PY - 2011-2012
PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2011-2012
SP - 1
EP - 10
AB - We provide some new explicit expressions for the linearized non-cutoff radially symmetric Boltzmann operator with Maxwellian molecules, proving that this operator is a simple function of the standard harmonic oscillator. A detailed article is available on arXiv [15].
LA - eng
KW - non-cutoff Boltzmann equation; non-cutoff Kac equation; spectral analysis; microlocal analysis; harmonic oscillator.
UR - http://eudml.org/doc/251161
ER -
References
top- Alexandre, R.: Remarks on 3D Boltzmann linear operator without cutoff. Transport Theory Statist. Phys. 28-5, 433Ð473 (1999). Zbl0939.35147MR1705619
- R. Alexandre, L. Desvillettes, C. Villani, B. Wennberg, Entropy dissipation and long-range interactions, Arch. Rational Mech. Anal. 152 (2000) 327-355. Zbl0968.76076MR1765272
- R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu, T.Yang, Uncertainty principle and kinetic equations, J. Funct. Anal. 255 (2008) 2013-2066. Zbl1166.35038MR2462585
- R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu, T. Yang, Global existence and full regularity of the Boltzmann equation without angular cutoff, Comm. Math. Phys. 304 (2011), 513-581. Zbl1230.35082MR2795331
- R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu, T. Yang, Boltzmann equation without angular cutoff in the whole space: I, Global existence for soft potential, J. Funct. Anal., Vol. 262 (2012), 915-1010. Zbl1232.35110MR2863853
- C. Cercignani, The Boltzmann Equation and its Applications, Applied Mathematical Sciences, vol. 67 (1988), Springer-Verlag, New York Zbl0646.76001MR1313028
- L. Desvillettes, About the regularization properties of the non cut-off Kac equation, Comm. Math. Phys. 168 (1995) 417-440. Zbl0827.76081MR1324404
- L. Desvillettes, G. Furioli, E. Terraneo, Propagation of Gevrey regularity for solutions of Boltzmann equation for Maxwellian molecules, Trans. Amer. Math. Soc. 361 (2009) 1731–1747. Zbl1159.76044MR2465814
- P.-T. Gressman, R.-M. Strain, Global classical solutions of the Boltzmann equation without angular cut-off, J. Amer. Math. Soc. 24 (2011), 771-847. Zbl1248.35140MR2784329
- L. Hörmander, The analysis of linear partial differential operators, vol. I–IV, (1985) Springer Verlag. Zbl0601.35001
- L. Hörmander, Symplectic classification of quadratic forms and general Mehler formulas, Math. Z. 219, 3 (1995) 413–449. Zbl0829.35150MR1339714
- N. Lekrine, C.-J. Xu, Gevrey regularizing effect of the Cauchy problem for non-cutoff homogeneous Kac’s equation, Kinetic and Related Models, 2 (2009), 647-666. Zbl1194.35089MR2556716
- N. Lerner, Metrics on the phase space and non-selfadjoint pseudodifferential operators, (2010) Pseudo-Differential Operators. Theory and Applications, Birkhäuser Verlag, Basel. Zbl1186.47001MR2599384
- N. Lerner, Y. Morimoto, K. Pravda-Starov, Hypoelliptic estimates for a linear model of the Boltzmann equation without angular cutoff, (2011) to appear in Comm. Partial Differential Equations, arXiv:1012.4915. Zbl1251.35064MR2876831
- N. Lerner, Y. Morimoto, K. Pravda-Starov, C.-J. Xu, Diagonalization of the Linearized Non-Cutoff Radially Symmetric Boltzmann Operator, preprint, arXiv:1111.0423v1. Zbl1319.35156
- Y. Morimoto, C.-J. Xu, Hypoellipticity for a class of kinetic equations, J. Math. Kyoto Univ. 47, no. 1 (2007), 129-152. Zbl1146.35027MR2359105
- Y. Morimoto, C.-J. Xu, Ultra-analytic effect of Cauchy problem for a class of kinetic equations, J. Differential Equations, 247 (2009) 596-617. Zbl1175.35024MR2523694
- C. Mouhot, Explicit coercivity estimates for the Boltzmann and Landau operators, Comm. Partial Differential Equations, 31 (2006) 1321-1348. Zbl1101.76053MR2254617
- C. Mouhot, R.M. Strain, Spectral gap and coercivity estimates for linearized Boltzmann collision operators without angular cutoff, J. Math. Pures Appl. (9) 87 (2007), no. 5, 515-535. Zbl05163855MR2322149
- Y.P. Pao, Boltzmann collision operator with inverse-power intermolecular potentials. I, Comm. Pure Appl. Math. 27 (1974) 407-428. Zbl0304.45010MR636407
- Y.P. Pao, Boltzmann collision operator with inverse-power intermolecular potentials. II, Comm. Pure Appl. Math. 27 (1974) 559-581. Zbl0304.45010MR636407
- A. Unterberger, Oscillateur harmonique et opérateurs pseudodifférentiels, Ann. Institut Fourier, 29 (3) (1979), 201-221. Zbl0396.47027MR552965
- C. Villani, A review of mathematical topics in collisional kinetic theory, Handbook of Mathematical Fluid Dynamics, vol. I, North-Holland, Amsterdam (2002) 71-305. Zbl1170.82369MR1942465
- B. Wennberg, Regularity in the Boltzmann equation and the Radon transform, Comm. Partial Differential Equations, 19 (1994) 2057-2074. Zbl0818.35128MR1301182
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.