Anisotropie dans un plasma fortement magnétisé
- [1] DMA, École Normale Supérieure 45 rue d’Ulm 75005 Paris France
Séminaire Laurent Schwartz — EDP et applications (2011-2012)
- page 1-14
- ISSN: 2266-0607
Access Full Article
topAbstract
topHow to cite
topHan-Kwan, Daniel. "Anisotropie dans un plasma fortement magnétisé." Séminaire Laurent Schwartz — EDP et applications (2011-2012): 1-14. <http://eudml.org/doc/251164>.
@article{Han2011-2012,
abstract = {Nous présentons les résultats prouvés dans [20, 22], qui concernent l’étude asymptotique de l’équation de Vlasov-Poisson dans un régime quasineutre et de champ magnétique intense. Nous insisterons en particulier sur les conséquences de l’anisotropie du problème physique sur l’analyse mathématique.},
affiliation = {DMA, École Normale Supérieure 45 rue d’Ulm 75005 Paris France},
author = {Han-Kwan, Daniel},
journal = {Séminaire Laurent Schwartz — EDP et applications},
language = {fre},
pages = {1-14},
publisher = {Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Anisotropie dans un plasma fortement magnétisé},
url = {http://eudml.org/doc/251164},
year = {2011-2012},
}
TY - JOUR
AU - Han-Kwan, Daniel
TI - Anisotropie dans un plasma fortement magnétisé
JO - Séminaire Laurent Schwartz — EDP et applications
PY - 2011-2012
PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
SP - 1
EP - 14
AB - Nous présentons les résultats prouvés dans [20, 22], qui concernent l’étude asymptotique de l’équation de Vlasov-Poisson dans un régime quasineutre et de champ magnétique intense. Nous insisterons en particulier sur les conséquences de l’anisotropie du problème physique sur l’analyse mathématique.
LA - fre
UR - http://eudml.org/doc/251164
ER -
References
top- G. Allaire. Homogenization and two-scale convergence. SIAM J. Math. Anal., 23(6) :1482–1518, 1992. Zbl0770.35005MR1185639
- M. Bostan. The Vlasov-Poisson system with strong external magnetic field. Finite Larmor radius regime. Asymptot. Anal., 61(2) :91–123, 2009. Zbl1180.35501MR2499194
- Y. Brenier. A homogenized model for vortex sheets. Arch. Rational Mech. Anal., 138(4) :319–353, 1997. Zbl0962.35140MR1467558
- Y. Brenier. Convergence of the Vlasov-Poisson system to the incompressible Euler equations. Comm. Partial Differential Equations, 25(3-4) :737–754, 2000. Zbl0970.35110MR1748352
- Y. Brenier and E. Grenier. Limite singulière du système de Vlasov-Poisson dans le régime de quasi neutralité : le cas indépendant du temps. C. R. Acad. Sci. Paris Sér. I Math., 318(2) :121–124, 1994. Zbl0803.35110MR1260322
- S. Cordier, E. Grenier, and Y. Guo. Two-stream instabilities in plasmas. Methods Appl. Anal., 7(2) :391–405, 2000. Cathleen Morawetz : a great mathematician. Zbl1002.82029MR1869291
- R. J. DiPerna and P.-L. Lions. Global weak solutions of Vlasov-Maxwell systems. Comm. Pure Appl. Math., 42(6) :729–757, 1989. Zbl0698.35128MR1003433
- R. J. DiPerna, P.-L. Lions, and Y. Meyer. regularity of velocity averages. Ann. Inst. H. Poincaré Anal. Non Linéaire, 8(3-4) :271–287, 1991. Zbl0763.35014MR1127927
- E. Frénod and A. Mouton. Two-dimensional finite Larmor radius approximation in canonical gyrokinetic coordinates. J. Pure Appl. Math. Adv. Appl., 4(2) :135–169, 2010. Zbl1225.35016MR2816864
- E. Frénod and E. Sonnendrücker. The finite Larmor radius approximation. SIAM J. Math. Anal., 32(6) :1227–1247 (electronic), 2001. Zbl0980.82030MR1856246
- P. Ghendrih, M. Hauray, and A. Nouri. Derivation of a gyrokinetic model. Existence and uniqueness of specific stationary solutions. Kinet. and Relat. Models, 2(4) :707–725, 2009. Zbl1195.82087MR2556718
- F. Golse, P.L. Lions, B. Perthame, and R. Sentis. Regularity of the moments of the solution of a transport equation. J. Funct. Anal., 76(1) :110–125, 1988. Zbl0652.47031MR923047
- F. Golse and L. Saint-Raymond. The Vlasov-Poisson system with strong magnetic field. J. Math. Pures Appl. (9), 78(8) :791–817, 1999. Zbl0977.35108MR1715342
- F. Golse and L. Saint-Raymond. The Vlasov-Poisson system with strong magnetic field in quasineutral regime. Math. Models Methods Appl. Sci., 13(5) :661–714, 2003. Zbl1053.82032MR1978931
- V. Grandgirard et al. Global full- gyrokinetic simulations of plasma turbulence. Plasma Phys. Control. Fusion, 49 :173–182, 2007.
- E. Grenier. Defect measures of the Vlasov-Poisson system in the quasineutral regime. Comm. Partial Differential Equations, 20(7-8) :1189–1215, 1995. Zbl0828.35106MR1335748
- E. Grenier. Oscillations in quasineutral plasmas. Comm. Partial Differential Equations, 21(3-4) :363–394, 1996. Zbl0849.35107MR1387452
- E. Grenier. Limite quasineutre en dimension 1. In Journées “Équations aux Dérivées Partielles” (Saint-Jean-de-Monts, 1999), pages Exp. No. II, 8. Univ. Nantes, Nantes, 1999. Zbl1008.35054MR1718954
- Y. Guo and W. A. Strauss. Nonlinear instability of double-humped equilibria. Ann. Inst. H. Poincaré Anal. Non Linéaire, 12(3) :339–352, 1995. Zbl0836.35130MR1340268
- D. Han-Kwan. The three-dimensional finite Larmor radius approximation. Asymptot. Anal., 66(1) :9–33, 2010. Zbl1191.35267MR2582446
- D. Han-Kwan. Effect of the polarization drift in a strongly magnetized plasma. ESAIM Math. Mod. Num. Anal., 46(4) :929-947, 2012. Zbl1310.76190MR2891475
- D. Han-Kwan. On the three-dimensional finite Larmor radius approximation : the case of electrons in a fixed background of ions. Soumis, 2011. Zbl1191.35267MR2582446
- D. Han-Kwan. Quasineutral limit of the Vlasov-Poisson system with massless electrons. Comm. Partial Differential Equations, 36(8) :1385–1425, 2011. Zbl1228.35251MR2825596
- M. Hauray and A. Nouri. Well-posedness of a diffusive gyro-kinetic model. To appear in Ann. IHP (Analyse Non Linéaire), 2011. Zbl1269.82075MR2823883
- P.-E. Jabin. Averaging lemmas and dispersion estimates for kinetic equations. Riv. Mat. Univ. Parma (8), 1 :71–138, 2009. Zbl1190.35152MR2597793
- G. Loeper. Quasi-neutral limit of the Euler-Poisson and Euler-Monge-Ampère systems. Comm. Partial Differential Equations, 30(7-9) :1141–1167, 2005. Zbl1077.76072MR2180297
- N. Masmoudi. From Vlasov-Poisson system to the incompressible Euler system. Comm. Partial Differential Equations, 26(9) :1913–1928, 2001. Zbl1083.35116MR1865949
- C. Mouhot and C. Villani. On Landau damping. To appear in Acta Mathematica, 2011. Zbl1239.82017MR2863910
- G. Nguetseng. A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal., 20(3) :608–623, 1989. Zbl0688.35007MR990867
- L. Nirenberg. An abstract form of the nonlinear Cauchy-Kowalewski theorem. J. Differential Geom., 6 :561–576, 1972. Zbl0257.35001MR322321
- T. Nishida. A note on a theorem of Nirenbeg. J. Differential Geom., 12 :629–633, 1977. Zbl0368.35007MR512931
- O. Penrose. Electrostatic instability of a uniform non-Maxwellian plasma. Phys. Fluids, 3 :258–265, 1960. Zbl0090.22801
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.