Elliptic problems with integral diffusion

Yannick Sire[1]

  • [1] Laboratoire LATP CNRS UMR 7353 Université Aix-Marseille 13397 Marseille Cedex 20 France

Séminaire Laurent Schwartz — EDP et applications (2011-2012)

  • Volume: 2011-2012, page 1-10
  • ISSN: 2266-0607

Abstract

top
In this paper, we review several recent results dealing with elliptic equations with non local diffusion. More precisely, we investigate several problems involving the fractional laplacian. Finally, we present a conformally covariant operator and the associated singular and regular Yamabe problem.

How to cite

top

Sire, Yannick. "Elliptic problems with integral diffusion." Séminaire Laurent Schwartz — EDP et applications 2011-2012 (2011-2012): 1-10. <http://eudml.org/doc/251173>.

@article{Sire2011-2012,
abstract = {In this paper, we review several recent results dealing with elliptic equations with non local diffusion. More precisely, we investigate several problems involving the fractional laplacian. Finally, we present a conformally covariant operator and the associated singular and regular Yamabe problem.},
affiliation = {Laboratoire LATP CNRS UMR 7353 Université Aix-Marseille 13397 Marseille Cedex 20 France},
author = {Sire, Yannick},
journal = {Séminaire Laurent Schwartz — EDP et applications},
keywords = {fractional Laplacian; differential geometry; Riemannian manifold; existence of solution; regularity},
language = {eng},
pages = {1-10},
publisher = {Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Elliptic problems with integral diffusion},
url = {http://eudml.org/doc/251173},
volume = {2011-2012},
year = {2011-2012},
}

TY - JOUR
AU - Sire, Yannick
TI - Elliptic problems with integral diffusion
JO - Séminaire Laurent Schwartz — EDP et applications
PY - 2011-2012
PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2011-2012
SP - 1
EP - 10
AB - In this paper, we review several recent results dealing with elliptic equations with non local diffusion. More precisely, we investigate several problems involving the fractional laplacian. Finally, we present a conformally covariant operator and the associated singular and regular Yamabe problem.
LA - eng
KW - fractional Laplacian; differential geometry; Riemannian manifold; existence of solution; regularity
UR - http://eudml.org/doc/251173
ER -

References

top
  1. Giovanni Alberti, Luigi Ambrosio, and Xavier Cabré. On a long-standing conjecture of E. De Giorgi: symmetry in 3D for general nonlinearities and a local minimality property. Acta Appl. Math., 65(1-3):9–33, 2001. Special issue dedicated to Antonio Avantaggiati on the occasion of his 70th birthday. Zbl1121.35312MR1843784
  2. Luigi Ambrosio and Xavier Cabré. Entire solutions of semilinear elliptic equations in 3 and a conjecture of De Giorgi. J. Amer. Math. Soc., 13(4):725–739, 2000. Zbl0968.35041MR1775735
  3. Isabeau Birindelli and Rafe Mazzeo. Symmetry for solutions of two-phase semilinear elliptic equations on hyperbolic space. Indiana Univ. Math. J., 58(5):2347–2368, 2009. Zbl1183.35136MR2583503
  4. Xavier Cabré and Eleonora Cinti. Energy estimates and 1-D symmetry for nonlinear equations involving the half-Laplacian. Discrete Contin. Dyn. Syst., 28(3):1179–1206, 2010. Zbl1193.35242MR2644786
  5. Antonio Capella, Juan Dávila, Louis Dupaigne, and Yannick Sire. Regularity of radial extremal solutions for some non-local semilinear equations. Comm. Partial Differential Equations, 36(8):1353–1384, 2011. Zbl1231.35076MR2825595
  6. Sun-Yung A. Chang, Fengbo Hang, and Paul C. Yang. On a class of locally conformally flat manifolds. Int. Math. Res. Not., (4):185–209, 2004. Zbl1137.53327MR2040327
  7. L. Caffarelli, J.-M. Roquejoffre, and O. Savin. Nonlocal minimal surfaces. Comm. Pure Appl. Math., 63(9):1111–1144, 2010. Zbl1248.53009MR2675483
  8. L. Caffarelli and L. Silvestre. An extension problem related to the fractional Laplacian. Commun. in PDE, 32(8):1245, 2007. Zbl1143.26002MR2354493
  9. X. Cabré and Y. Sire. Nonlinear equations for fractional Laplacians II: existence, uniqueness, and qualitative properties of solutions. Preprint, 2010. Zbl1317.35280
  10. Manuel del, Mike Kowalczyk, and Juncheng Wei. On De Giorgi Conjecture in Dimension N 9 . To appear Ann. of Maths, 2011. Zbl1238.35019
  11. González Maria del Mar, Rafe Mazzeo, and Yannick Sire. Singular solutions of fractional order conformal laplacians. To appear J. Geom. Anal., 2010. Zbl1255.53037MR2927681
  12. Louis Dupaigne and Yannick Sire. A Liouville theorem for non local elliptic equations. In Symmetry for elliptic PDEs, volume 528 of Contemp. Math., pages 105–114. Amer. Math. Soc., Providence, RI, 2010. Zbl1218.35243MR2759038
  13. Alberto Farina, Yannick Sire, and Enrico Valdinoci. Stable solutions on Riemannian manifolds. To appear J. of Geom. Anal., 2011. Zbl1273.53029
  14. N. Ghoussoub and C. Gui. On a conjecture of De Giorgi and some related problems. Math. Ann., 311(3):481–491, 1998. Zbl0918.35046MR1637919
  15. C. Robin Graham, Ralph Jenne, Lionel J. Mason, and George A. J. Sparling. Conformally invariant powers of the Laplacian. I. Existence. J. London Math. Soc. (2), 46(3):557–565, 1992. Zbl0726.53010MR1190438
  16. María del Mar González. Singular sets of a class of locally conformally flat manifolds. Duke Math. J., 129(3):551–572, 2005. Zbl1088.53023MR2169873
  17. C. Robin Graham and Maciej Zworski. Scattering matrix in conformal geometry. Invent. Math., 152(1):89–118, 2003. Zbl1030.58022MR1965361
  18. D. D. Joseph and T. S. Lundgren. Quasilinear Dirichlet problems driven by positive sources. Arch. Rational Mech. Anal., 49:241–269, 1972/73. Zbl0266.34021MR340701
  19. A. Juhl. On conformally covariant powers of the laplacian. Preprint. 
  20. Andreas Juhl. Families of conformally covariant differential operators, Q -curvature and holography, volume 275 of Progress in Mathematics. Birkhäuser Verlag, Basel, 2009. Zbl1177.53001MR2521913
  21. Denis A. Labutin. Wiener regularity for large solutions of nonlinear equations. Ark. Mat., 41(2):307–339, 2003. Zbl1071.35048MR2011924
  22. Rafe Mazzeo and Frank Pacard. A construction of singular solutions for a semilinear elliptic equation using asymptotic analysis. J. Differential Geom., 44(2):331–370, 1996. Zbl0869.35040MR1425579
  23. J. Qing and M.d.M. Gonzalez. the fractional yamabe problem. Preprint, 2010. 
  24. Ovidiu Savin. Regularity of flat level sets in phase transitions. Ann. of Math. (2), 169(1):41–78, 2009. Zbl1180.35499MR2480601
  25. Yannick Sire and Enrico Valdinoci. Fractional Laplacian phase transitions and boundary reactions: A geometric inequality and a symmetry result. J. Funct. Anal., 256(6):1842–1864, 2009. Zbl1163.35019MR2498561
  26. Yannick Sire and Enrico Valdinoci. Fractional Laplacian phase transitions and boundary reactions: a geometric inequality and a symmetry result. J. Funct. Anal., 256(6):1842–1864, 2009. Zbl1163.35019MR2498561
  27. Ovidiu Savin and Enrico Valdinoci. A gamma-convergence result for non local phase transitions. Preprint, 2010. Zbl1253.49008
  28. Yannick Sire and Enrico Valdinoci. Some elliptic PDEs on Riemannian manifolds with boundary. Pacific J. Math., 248(2):475–492, 2010. Zbl1205.35061MR2741258
  29. R. Schoen and S.-T. Yau. Conformally flat manifolds, Kleinian groups and scalar curvature. Invent. Math., 92(1):47–71, 1988. Zbl0658.53038MR931204

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.