Elliptic problems with integral diffusion
Yannick Sire[1]
- [1] Laboratoire LATP CNRS UMR 7353 Université Aix-Marseille 13397 Marseille Cedex 20 France
Séminaire Laurent Schwartz — EDP et applications (2011-2012)
- Volume: 2011-2012, page 1-10
- ISSN: 2266-0607
Access Full Article
topAbstract
topHow to cite
topSire, Yannick. "Elliptic problems with integral diffusion." Séminaire Laurent Schwartz — EDP et applications 2011-2012 (2011-2012): 1-10. <http://eudml.org/doc/251173>.
@article{Sire2011-2012,
abstract = {In this paper, we review several recent results dealing with elliptic equations with non local diffusion. More precisely, we investigate several problems involving the fractional laplacian. Finally, we present a conformally covariant operator and the associated singular and regular Yamabe problem.},
affiliation = {Laboratoire LATP CNRS UMR 7353 Université Aix-Marseille 13397 Marseille Cedex 20 France},
author = {Sire, Yannick},
journal = {Séminaire Laurent Schwartz — EDP et applications},
keywords = {fractional Laplacian; differential geometry; Riemannian manifold; existence of solution; regularity},
language = {eng},
pages = {1-10},
publisher = {Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Elliptic problems with integral diffusion},
url = {http://eudml.org/doc/251173},
volume = {2011-2012},
year = {2011-2012},
}
TY - JOUR
AU - Sire, Yannick
TI - Elliptic problems with integral diffusion
JO - Séminaire Laurent Schwartz — EDP et applications
PY - 2011-2012
PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2011-2012
SP - 1
EP - 10
AB - In this paper, we review several recent results dealing with elliptic equations with non local diffusion. More precisely, we investigate several problems involving the fractional laplacian. Finally, we present a conformally covariant operator and the associated singular and regular Yamabe problem.
LA - eng
KW - fractional Laplacian; differential geometry; Riemannian manifold; existence of solution; regularity
UR - http://eudml.org/doc/251173
ER -
References
top- Giovanni Alberti, Luigi Ambrosio, and Xavier Cabré. On a long-standing conjecture of E. De Giorgi: symmetry in 3D for general nonlinearities and a local minimality property. Acta Appl. Math., 65(1-3):9–33, 2001. Special issue dedicated to Antonio Avantaggiati on the occasion of his 70th birthday. Zbl1121.35312MR1843784
- Luigi Ambrosio and Xavier Cabré. Entire solutions of semilinear elliptic equations in and a conjecture of De Giorgi. J. Amer. Math. Soc., 13(4):725–739, 2000. Zbl0968.35041MR1775735
- Isabeau Birindelli and Rafe Mazzeo. Symmetry for solutions of two-phase semilinear elliptic equations on hyperbolic space. Indiana Univ. Math. J., 58(5):2347–2368, 2009. Zbl1183.35136MR2583503
- Xavier Cabré and Eleonora Cinti. Energy estimates and 1-D symmetry for nonlinear equations involving the half-Laplacian. Discrete Contin. Dyn. Syst., 28(3):1179–1206, 2010. Zbl1193.35242MR2644786
- Antonio Capella, Juan Dávila, Louis Dupaigne, and Yannick Sire. Regularity of radial extremal solutions for some non-local semilinear equations. Comm. Partial Differential Equations, 36(8):1353–1384, 2011. Zbl1231.35076MR2825595
- Sun-Yung A. Chang, Fengbo Hang, and Paul C. Yang. On a class of locally conformally flat manifolds. Int. Math. Res. Not., (4):185–209, 2004. Zbl1137.53327MR2040327
- L. Caffarelli, J.-M. Roquejoffre, and O. Savin. Nonlocal minimal surfaces. Comm. Pure Appl. Math., 63(9):1111–1144, 2010. Zbl1248.53009MR2675483
- L. Caffarelli and L. Silvestre. An extension problem related to the fractional Laplacian. Commun. in PDE, 32(8):1245, 2007. Zbl1143.26002MR2354493
- X. Cabré and Y. Sire. Nonlinear equations for fractional Laplacians II: existence, uniqueness, and qualitative properties of solutions. Preprint, 2010. Zbl1317.35280
- Manuel del, Mike Kowalczyk, and Juncheng Wei. On De Giorgi Conjecture in Dimension . To appear Ann. of Maths, 2011. Zbl1238.35019
- González Maria del Mar, Rafe Mazzeo, and Yannick Sire. Singular solutions of fractional order conformal laplacians. To appear J. Geom. Anal., 2010. Zbl1255.53037MR2927681
- Louis Dupaigne and Yannick Sire. A Liouville theorem for non local elliptic equations. In Symmetry for elliptic PDEs, volume 528 of Contemp. Math., pages 105–114. Amer. Math. Soc., Providence, RI, 2010. Zbl1218.35243MR2759038
- Alberto Farina, Yannick Sire, and Enrico Valdinoci. Stable solutions on Riemannian manifolds. To appear J. of Geom. Anal., 2011. Zbl1273.53029
- N. Ghoussoub and C. Gui. On a conjecture of De Giorgi and some related problems. Math. Ann., 311(3):481–491, 1998. Zbl0918.35046MR1637919
- C. Robin Graham, Ralph Jenne, Lionel J. Mason, and George A. J. Sparling. Conformally invariant powers of the Laplacian. I. Existence. J. London Math. Soc. (2), 46(3):557–565, 1992. Zbl0726.53010MR1190438
- María del Mar González. Singular sets of a class of locally conformally flat manifolds. Duke Math. J., 129(3):551–572, 2005. Zbl1088.53023MR2169873
- C. Robin Graham and Maciej Zworski. Scattering matrix in conformal geometry. Invent. Math., 152(1):89–118, 2003. Zbl1030.58022MR1965361
- D. D. Joseph and T. S. Lundgren. Quasilinear Dirichlet problems driven by positive sources. Arch. Rational Mech. Anal., 49:241–269, 1972/73. Zbl0266.34021MR340701
- A. Juhl. On conformally covariant powers of the laplacian. Preprint.
- Andreas Juhl. Families of conformally covariant differential operators, -curvature and holography, volume 275 of Progress in Mathematics. Birkhäuser Verlag, Basel, 2009. Zbl1177.53001MR2521913
- Denis A. Labutin. Wiener regularity for large solutions of nonlinear equations. Ark. Mat., 41(2):307–339, 2003. Zbl1071.35048MR2011924
- Rafe Mazzeo and Frank Pacard. A construction of singular solutions for a semilinear elliptic equation using asymptotic analysis. J. Differential Geom., 44(2):331–370, 1996. Zbl0869.35040MR1425579
- J. Qing and M.d.M. Gonzalez. the fractional yamabe problem. Preprint, 2010.
- Ovidiu Savin. Regularity of flat level sets in phase transitions. Ann. of Math. (2), 169(1):41–78, 2009. Zbl1180.35499MR2480601
- Yannick Sire and Enrico Valdinoci. Fractional Laplacian phase transitions and boundary reactions: A geometric inequality and a symmetry result. J. Funct. Anal., 256(6):1842–1864, 2009. Zbl1163.35019MR2498561
- Yannick Sire and Enrico Valdinoci. Fractional Laplacian phase transitions and boundary reactions: a geometric inequality and a symmetry result. J. Funct. Anal., 256(6):1842–1864, 2009. Zbl1163.35019MR2498561
- Ovidiu Savin and Enrico Valdinoci. A gamma-convergence result for non local phase transitions. Preprint, 2010. Zbl1253.49008
- Yannick Sire and Enrico Valdinoci. Some elliptic PDEs on Riemannian manifolds with boundary. Pacific J. Math., 248(2):475–492, 2010. Zbl1205.35061MR2741258
- R. Schoen and S.-T. Yau. Conformally flat manifolds, Kleinian groups and scalar curvature. Invent. Math., 92(1):47–71, 1988. Zbl0658.53038MR931204
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.