Null controllability of degenerate parabolic equations of Grushin and Kolmogorov type
- [1] CMLS Ecole Polytechnique 91128 Palaiseau Cedex France
Séminaire Laurent Schwartz — EDP et applications (2011-2012)
- Volume: 2011-2012, page 1-24
- ISSN: 2266-0607
Access Full Article
topAbstract
topHow to cite
topBeauchard, Karine. "Null controllability of degenerate parabolic equations of Grushin and Kolmogorov type." Séminaire Laurent Schwartz — EDP et applications 2011-2012 (2011-2012): 1-24. <http://eudml.org/doc/251177>.
@article{Beauchard2011-2012,
abstract = {The goal of this note is to present the results of the references [5] and [4]. We study the null controllability of the parabolic equations associated with the Grushin-type operator $\partial _x^2+|x|^\{2\gamma \}\partial _y^2$ ($\gamma >0$) in the rectangle $(x,y) \in (-1,1)\times (0,1)$ or with the Kolmogorov-type operator $ v^\gamma \partial _x f + \partial _v^2 f$ ($\gamma \in \lbrace 1,2\rbrace $) in the rectangle $(x,v) \in \mathbb\{T\} \times (-1,1)$, under an additive control supported in an open subset $\omega $ of the space domain.We prove that the Grushin-type equation is null controllable in any positive time for $\gamma <1$ and that there is no time for which it is null controllable for $\gamma >1$. In the transition regime $\gamma =1$ and when $\omega $ is a strip $\omega =(a,b)\times (0,1)\,, (0<a,b\le 1)$, a positive minimal time is required for null controllability.For the Kolmogorov-type equation with $\gamma =1$ and periodic-type boundary conditions (in $v$), we prove that null controllability holds in any positive time, with any control support $\omega $. This improves the previous result [6], in which the control support was a strip $\omega =\mathbb\{T\}\times (a,b)$.For the Kolmogorov-type equation with Dirichlet boundary conditions and a strip $\omega =\mathbb\{T\}\times (a,b)$ ($0<a<b<1$) as control support, we prove that null controllability holds in any positive time if $\gamma =1$, and only in large time if $\gamma =2$.Our approach, inspired from [8, 33], is based on 2 key ingredients: the observability of the Fourier components of the solution of the adjoint system (a heat equation with potential), uniformly with respect to the frequency, and the explicit exponential decay rate of these Fourier components.},
affiliation = {CMLS Ecole Polytechnique 91128 Palaiseau Cedex France},
author = {Beauchard, Karine},
journal = {Séminaire Laurent Schwartz — EDP et applications},
keywords = {null controllability; degenerate parabolic equations; Carleman estimates; hypoelliptic systems},
language = {eng},
pages = {1-24},
publisher = {Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Null controllability of degenerate parabolic equations of Grushin and Kolmogorov type},
url = {http://eudml.org/doc/251177},
volume = {2011-2012},
year = {2011-2012},
}
TY - JOUR
AU - Beauchard, Karine
TI - Null controllability of degenerate parabolic equations of Grushin and Kolmogorov type
JO - Séminaire Laurent Schwartz — EDP et applications
PY - 2011-2012
PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2011-2012
SP - 1
EP - 24
AB - The goal of this note is to present the results of the references [5] and [4]. We study the null controllability of the parabolic equations associated with the Grushin-type operator $\partial _x^2+|x|^{2\gamma }\partial _y^2$ ($\gamma >0$) in the rectangle $(x,y) \in (-1,1)\times (0,1)$ or with the Kolmogorov-type operator $ v^\gamma \partial _x f + \partial _v^2 f$ ($\gamma \in \lbrace 1,2\rbrace $) in the rectangle $(x,v) \in \mathbb{T} \times (-1,1)$, under an additive control supported in an open subset $\omega $ of the space domain.We prove that the Grushin-type equation is null controllable in any positive time for $\gamma <1$ and that there is no time for which it is null controllable for $\gamma >1$. In the transition regime $\gamma =1$ and when $\omega $ is a strip $\omega =(a,b)\times (0,1)\,, (0<a,b\le 1)$, a positive minimal time is required for null controllability.For the Kolmogorov-type equation with $\gamma =1$ and periodic-type boundary conditions (in $v$), we prove that null controllability holds in any positive time, with any control support $\omega $. This improves the previous result [6], in which the control support was a strip $\omega =\mathbb{T}\times (a,b)$.For the Kolmogorov-type equation with Dirichlet boundary conditions and a strip $\omega =\mathbb{T}\times (a,b)$ ($0<a<b<1$) as control support, we prove that null controllability holds in any positive time if $\gamma =1$, and only in large time if $\gamma =2$.Our approach, inspired from [8, 33], is based on 2 key ingredients: the observability of the Fourier components of the solution of the adjoint system (a heat equation with potential), uniformly with respect to the frequency, and the explicit exponential decay rate of these Fourier components.
LA - eng
KW - null controllability; degenerate parabolic equations; Carleman estimates; hypoelliptic systems
UR - http://eudml.org/doc/251177
ER -
References
top- F. Alabau-Boussouira, P. Cannarsa, and G. Fragnelli. Carleman estimates for degenerate parabolic operators with applications to null controllability. J. Evol. Equ., 6(2):161–204, 2006. Zbl1103.35052MR2227693
- S. Alinhac and C. Zuily. Uniqueness and nonuniqueness of the Cauchy problem for hyperbolic operators with double characteristics. Comm. Partial Differential Equations, 6(7):799–828, 1981. Zbl0482.35052MR623646
- Y. Almog. The stability of the normal state of superconductors in the presence of electric currents. SIAM J. Math. Anal., 40(2):824–850, 2008. Zbl1165.82029MR2438788
- K. Beauchard. Null controllability of Kolmogorov-type equations. (preprint), 2012. Zbl1291.93035
- K. Beauchard, P. Cannarsa, and R. Guglielmi. Null controllability of Grushin-type operators in dimension two. J. Eur. Math. Soc (to appear), 2011. Zbl1293.35148
- K. Beauchard and E. Zuazua. Some controllability results for the 2D Kolmogorov equation. Ann. Inst. H. Poincaré Anal. Non Linéaire, 26:1793–1815, 2009. Zbl1172.93005MR2566710
- A. Benabdallah, Y. Dermenjian, and J. Le Rousseau. Carleman estimates for the one-dimensional heat equation with a discontinuous coefficient and applications to controllability and an inverse problem. J. Math. Anal. Appl., 336(2):865–887, 2007. Zbl1189.35349MR2352986
- A. Benabdallah, Y. Dermenjian, and J. Le Rousseau. On the controllability of linear parabolic equations with an arbitrary control location for stratified media. C. R. Math. Acad. Sci. Paris, 344(6):357–362, 2007. Zbl1115.35055MR2310670
- P. Cannarsa and L. de Teresa. Controllability of 1-D coupled degenerate parabolic equations. Electron. J. Differ. Equ., Paper No. 73:21 p., 2009. Zbl1178.35216MR2519898
- P. Cannarsa, G. Fragnelli, and D. Rocchetti. Null controllability of degenerate parabolic operators with drift. Netw. Heterog. Media, 2(4):695–715 (electronic), 2007. Zbl1140.93011MR2357764
- P. Cannarsa, G. Fragnelli, and D. Rocchetti. Controllability results for a class of one-dimensional degenerate parabolic problems in nondivergence form. J. Evol. Equ., 8:583–616, 2008. Zbl1176.35108MR2460930
- P. Cannarsa, P. Martinez, and J. Vancostenoble. Persistent regional null controllability for a class of degenerate parabolic equations. Commun. Pure Appl. Anal., 3(4):607–635, 2004. Zbl1063.35092MR2106292
- P. Cannarsa, P. Martinez, and J. Vancostenoble. Null controllability of degenerate heat equations. Adv. Differential Equations, 10(2):153–190, 2005. Zbl1145.35408MR2106129
- P. Cannarsa, P. Martinez, and J. Vancostenoble. Carleman estimates for a class of degenerate parabolic operators. SIAM J. Control Optim., 47(1):1–19, 2008. Zbl1168.35025MR2373460
- P. Cannarsa, P. Martinez, and J. Vancostenoble. Carleman estimates and null controllability for boundary-degenerate parabolic operators. C. R. Math. Acad. Sci. Paris, 347(3-4):147–152, 2009. Zbl1162.35330MR2538102
- A. Doubova, E. Fernández-Cara, and E. Zuazua. On the controllability of parabolic systems with a nonlinear term involving the state and the gradient. SIAM J. Control Optim., 42 (3):798–819, 2002. Zbl1038.93041MR1939871
- A. Doubova, A. Osses, and J.-P. Puel. Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients. ESAIM Control Optim. Calc. Var., 8:621–661, 2002. Zbl1092.93006MR1932966
- T. Duyckaerts, X. Zhang, and E. Zuazua. On the optimality of the observability inequalities for parabolic and hyperbolic systems with potentials. Ann. Inst. H. Poincaré : Analyse Nonlinéaire, 25:1–41, 2008. Zbl1248.93031MR2383077
- Sylvain Ervedoza. Control and stabilization properties for a singular heat equation with an inverse-square potential. Comm. Partial Differential Equations, 33(10-12):1996–2019, 2008. Zbl1170.35331MR2475327
- C. Fabre, J.P. Puel, and E. Zuazua. Approximate controllability of the semilinear heat equation. Proc. Roy. Soc. Edinburgh, 125A:31–61, 1995. Zbl0818.93032MR1318622
- H.O. Fattorini and D. Russel. Exact controllability theorems for linear parabolic equations in one space dimension. Arch. Rational Mech. Anal., 43:272–292, 1971. Zbl0231.93003MR335014
- E. Fernández-Cara and E. Zuazua. Null and approximate controllability for weakly blowing up semilinear heat equations. Ann. Inst. H. Poincaré Anal. Non Linéaire, 17:583–616, 2000. Zbl0970.93023MR1791879
- E. Fernández-Cara and E. Zuazua. The cost of approximate controllability for heat equations: The linear case. Advances in Differential Equations, 5(4-6):465–514, 2000. Zbl1007.93034MR1750109
- E. Fernández-Cara and E. Zuazua. On the null controllability of the one-dimensional heat equation with BV coefficients. Computational and Applied Mathematics, 12:167–190, 2002. Zbl1119.93311MR2009951
- C. Flores and L. de Teresa. Carleman estimates for degenerate parabolic equations with first order terms and applications. C. R. Math. Acad. Sci. Paris, 348(7-8):391–396, 2010. Zbl1188.35032MR2607025
- A.V. Fursikov and O.Y. Imanuvilov. Controllability of evolution equations. Lecture Notes Series, Seoul National University Research Institute of Mathematics Global Analysis Research Center, Seoul, 34, 1996. Zbl0862.49004MR1406566
- N. Garofalo. Unique continuation for a class of elliptic operators which degenerate on a manifold of arbitrary codimension. J. Differential Equations, 104(1):117–146, 1993. Zbl0788.35051MR1224123
- M. González-Burgos and L. de Teresa. Some results on controllability for linear and nonlinear heat equations in unbounded domains. Adv. Differential Equations, 12 (11):1201–1240, 2007. Zbl1170.93007MR2372238
- L. Hörmander. Hypoelliptic second order differential equations. Acta Math., 119:147–171, 1967. Zbl0156.10701MR222474
- O.Y. Imanuvilov. Boundary controllability of parabolic equations. Uspekhi. Mat. Nauk, 48(3(291)):211–212, 1993. MR1243631
- O.Y. Imanuvilov. Controllability of parabolic equations. Mat. Sb., 186(6):109–132, 1995. Zbl0845.35040MR1349016
- O.Y. Imanuvilov and M. Yamamoto. Carleman estimate for a parabolic equation in Sobolev spaces of negative order and its applications. Control of Nonlinear Distributed Parameter Systems, G. Chen et al. eds., Marcel-Dekker, pages 113–137, 2000. Zbl0977.93041MR1817179
- G. Lebeau and L. Robbiano. Contrôle exact de l’équation de la chaleur. Comm. P.D.E., 20:335–356, 1995. Zbl0819.35071MR1312710
- G. Lebeau and J. Le Rousseau. On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations. ESAIM:COCV (DOI:10.1051/cocv/2011168), 2011. Zbl1262.35206
- J.-L. Lions. Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles. Avant propos de P. Lelong. Dunod, Paris, 1968. Zbl0179.41801MR244606
- A. Lopez and E. Zuazua. Uniform null controllability for the one dimensional heat equation with rapidly oscillating periodic density. Annales IHP. Analyse non linéaire, 19 (5):543–580, 2002. Zbl1009.35009MR1922469
- P. Martinez and J. Vancostenoble. Carleman estimates for one-dimensional degenerate heat equations. J. Evol. Equ., 6(2):325–362, 2006. Zbl1179.93043MR2227700
- P. Martinez, J. Vancostonoble, and J.-P. Raymond. Regional null controllability of a linearized Crocco type equation. SIAM J. Control Optim., 42, no. 2:709–728, 2003. Zbl1037.93013MR1982289
- L. Miller. On the null-controllability of the heat equation in unbounded domains. Bulletin des Sciences Mathématiques, 129, 2:175–185, 2005. Zbl1079.35018MR2123266
- L. Miller. On exponential observability estimates for the heat semigroup with explicit rates. Rendiconti Lincei: Matematica e Applicazioni, 17, 4:351–366, 2006. Zbl1150.93006MR2287707
- J. Le Rousseau. Carleman estimates and controllability results for the one-dimensional heat equation with BV coefficients. J. Differential Equations, 233(2):417–447, 2007. Zbl1128.35020MR2292514
- J. Vancostenoble and E. Zuazua. Null controllability for the heat equation with singular inverse-square potentials. J. Funct. Anal., 254(7):1864–1902, 2008. Zbl1145.93009MR2397877
- C. Villani. Hypocoercivity, volume 202. Mem. Amer. Math. Soc., 2009. Zbl1197.35004MR2562709
- Zabczyk. Mathematical control theory: an introduction. Birkhäuser, 2000. Zbl1071.93500MR2348543
- E. Zuazua. Approximate controllability of the semilinear heat equation: boundary control. International Conference in honour of Prof. R. Glowinski, Computational Sciences for the 21st Century, M.O. Bristeau et al. eds., John Wiley and Sons, pages 738–747, 1997. Zbl0916.93016
- E. Zuazua. Finite dimensional null-controllability of the semilinear heat equation. J.Math. Pures et Appl., 76:237–264, 1997. Zbl0872.93014MR1441986
- C. Zuily. Uniqueness and non-uniqueness in the Cauchy problem. Boston Basel Stuttgart Birkhäuser, 1983. Zbl0521.35003
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.