Null controllability of degenerate parabolic equations of Grushin and Kolmogorov type

Karine Beauchard[1]

  • [1] CMLS Ecole Polytechnique 91128 Palaiseau Cedex France

Séminaire Laurent Schwartz — EDP et applications (2011-2012)

  • Volume: 2011-2012, page 1-24
  • ISSN: 2266-0607

Abstract

top
The goal of this note is to present the results of the references [5] and [4]. We study the null controllability of the parabolic equations associated with the Grushin-type operator x 2 + | x | 2 γ y 2 ( γ > 0 ) in the rectangle ( x , y ) ( - 1 , 1 ) × ( 0 , 1 ) or with the Kolmogorov-type operator v γ x f + v 2 f ( γ { 1 , 2 } ) in the rectangle ( x , v ) 𝕋 × ( - 1 , 1 ) , under an additive control supported in an open subset ω of the space domain.We prove that the Grushin-type equation is null controllable in any positive time for γ < 1 and that there is no time for which it is null controllable for γ > 1 . In the transition regime γ = 1 and when ω is a strip ω = ( a , b ) × ( 0 , 1 ) , ( 0 < a , b 1 ) , a positive minimal time is required for null controllability.For the Kolmogorov-type equation with γ = 1 and periodic-type boundary conditions (in v ), we prove that null controllability holds in any positive time, with any control support ω . This improves the previous result [6], in which the control support was a strip ω = 𝕋 × ( a , b ) .For the Kolmogorov-type equation with Dirichlet boundary conditions and a strip ω = 𝕋 × ( a , b ) ( 0 < a < b < 1 ) as control support, we prove that null controllability holds in any positive time if γ = 1 , and only in large time if γ = 2 .Our approach, inspired from [8, 33], is based on 2 key ingredients: the observability of the Fourier components of the solution of the adjoint system (a heat equation with potential), uniformly with respect to the frequency, and the explicit exponential decay rate of these Fourier components.

How to cite

top

Beauchard, Karine. "Null controllability of degenerate parabolic equations of Grushin and Kolmogorov type." Séminaire Laurent Schwartz — EDP et applications 2011-2012 (2011-2012): 1-24. <http://eudml.org/doc/251177>.

@article{Beauchard2011-2012,
abstract = {The goal of this note is to present the results of the references [5] and [4]. We study the null controllability of the parabolic equations associated with the Grushin-type operator $\partial _x^2+|x|^\{2\gamma \}\partial _y^2$ ($\gamma &gt;0$) in the rectangle $(x,y) \in (-1,1)\times (0,1)$ or with the Kolmogorov-type operator $ v^\gamma \partial _x f + \partial _v^2 f$ ($\gamma \in \lbrace 1,2\rbrace $) in the rectangle $(x,v) \in \mathbb\{T\} \times (-1,1)$, under an additive control supported in an open subset $\omega $ of the space domain.We prove that the Grushin-type equation is null controllable in any positive time for $\gamma &lt;1$ and that there is no time for which it is null controllable for $\gamma &gt;1$. In the transition regime $\gamma =1$ and when $\omega $ is a strip $\omega =(a,b)\times (0,1)\,, (0&lt;a,b\le 1)$, a positive minimal time is required for null controllability.For the Kolmogorov-type equation with $\gamma =1$ and periodic-type boundary conditions (in $v$), we prove that null controllability holds in any positive time, with any control support $\omega $. This improves the previous result [6], in which the control support was a strip $\omega =\mathbb\{T\}\times (a,b)$.For the Kolmogorov-type equation with Dirichlet boundary conditions and a strip $\omega =\mathbb\{T\}\times (a,b)$ ($0&lt;a&lt;b&lt;1$) as control support, we prove that null controllability holds in any positive time if $\gamma =1$, and only in large time if $\gamma =2$.Our approach, inspired from [8, 33], is based on 2 key ingredients: the observability of the Fourier components of the solution of the adjoint system (a heat equation with potential), uniformly with respect to the frequency, and the explicit exponential decay rate of these Fourier components.},
affiliation = {CMLS Ecole Polytechnique 91128 Palaiseau Cedex France},
author = {Beauchard, Karine},
journal = {Séminaire Laurent Schwartz — EDP et applications},
keywords = {null controllability; degenerate parabolic equations; Carleman estimates; hypoelliptic systems},
language = {eng},
pages = {1-24},
publisher = {Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Null controllability of degenerate parabolic equations of Grushin and Kolmogorov type},
url = {http://eudml.org/doc/251177},
volume = {2011-2012},
year = {2011-2012},
}

TY - JOUR
AU - Beauchard, Karine
TI - Null controllability of degenerate parabolic equations of Grushin and Kolmogorov type
JO - Séminaire Laurent Schwartz — EDP et applications
PY - 2011-2012
PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2011-2012
SP - 1
EP - 24
AB - The goal of this note is to present the results of the references [5] and [4]. We study the null controllability of the parabolic equations associated with the Grushin-type operator $\partial _x^2+|x|^{2\gamma }\partial _y^2$ ($\gamma &gt;0$) in the rectangle $(x,y) \in (-1,1)\times (0,1)$ or with the Kolmogorov-type operator $ v^\gamma \partial _x f + \partial _v^2 f$ ($\gamma \in \lbrace 1,2\rbrace $) in the rectangle $(x,v) \in \mathbb{T} \times (-1,1)$, under an additive control supported in an open subset $\omega $ of the space domain.We prove that the Grushin-type equation is null controllable in any positive time for $\gamma &lt;1$ and that there is no time for which it is null controllable for $\gamma &gt;1$. In the transition regime $\gamma =1$ and when $\omega $ is a strip $\omega =(a,b)\times (0,1)\,, (0&lt;a,b\le 1)$, a positive minimal time is required for null controllability.For the Kolmogorov-type equation with $\gamma =1$ and periodic-type boundary conditions (in $v$), we prove that null controllability holds in any positive time, with any control support $\omega $. This improves the previous result [6], in which the control support was a strip $\omega =\mathbb{T}\times (a,b)$.For the Kolmogorov-type equation with Dirichlet boundary conditions and a strip $\omega =\mathbb{T}\times (a,b)$ ($0&lt;a&lt;b&lt;1$) as control support, we prove that null controllability holds in any positive time if $\gamma =1$, and only in large time if $\gamma =2$.Our approach, inspired from [8, 33], is based on 2 key ingredients: the observability of the Fourier components of the solution of the adjoint system (a heat equation with potential), uniformly with respect to the frequency, and the explicit exponential decay rate of these Fourier components.
LA - eng
KW - null controllability; degenerate parabolic equations; Carleman estimates; hypoelliptic systems
UR - http://eudml.org/doc/251177
ER -

References

top
  1. F. Alabau-Boussouira, P. Cannarsa, and G. Fragnelli. Carleman estimates for degenerate parabolic operators with applications to null controllability. J. Evol. Equ., 6(2):161–204, 2006. Zbl1103.35052MR2227693
  2. S. Alinhac and C. Zuily. Uniqueness and nonuniqueness of the Cauchy problem for hyperbolic operators with double characteristics. Comm. Partial Differential Equations, 6(7):799–828, 1981. Zbl0482.35052MR623646
  3. Y. Almog. The stability of the normal state of superconductors in the presence of electric currents. SIAM J. Math. Anal., 40(2):824–850, 2008. Zbl1165.82029MR2438788
  4. K. Beauchard. Null controllability of Kolmogorov-type equations. (preprint), 2012. Zbl1291.93035
  5. K. Beauchard, P. Cannarsa, and R. Guglielmi. Null controllability of Grushin-type operators in dimension two. J. Eur. Math. Soc (to appear), 2011. Zbl1293.35148
  6. K. Beauchard and E. Zuazua. Some controllability results for the 2D Kolmogorov equation. Ann. Inst. H. Poincaré Anal. Non Linéaire, 26:1793–1815, 2009. Zbl1172.93005MR2566710
  7. A. Benabdallah, Y. Dermenjian, and J. Le Rousseau. Carleman estimates for the one-dimensional heat equation with a discontinuous coefficient and applications to controllability and an inverse problem. J. Math. Anal. Appl., 336(2):865–887, 2007. Zbl1189.35349MR2352986
  8. A. Benabdallah, Y. Dermenjian, and J. Le Rousseau. On the controllability of linear parabolic equations with an arbitrary control location for stratified media. C. R. Math. Acad. Sci. Paris, 344(6):357–362, 2007. Zbl1115.35055MR2310670
  9. P. Cannarsa and L. de Teresa. Controllability of 1-D coupled degenerate parabolic equations. Electron. J. Differ. Equ., Paper No. 73:21 p., 2009. Zbl1178.35216MR2519898
  10. P. Cannarsa, G. Fragnelli, and D. Rocchetti. Null controllability of degenerate parabolic operators with drift. Netw. Heterog. Media, 2(4):695–715 (electronic), 2007. Zbl1140.93011MR2357764
  11. P. Cannarsa, G. Fragnelli, and D. Rocchetti. Controllability results for a class of one-dimensional degenerate parabolic problems in nondivergence form. J. Evol. Equ., 8:583–616, 2008. Zbl1176.35108MR2460930
  12. P. Cannarsa, P. Martinez, and J. Vancostenoble. Persistent regional null controllability for a class of degenerate parabolic equations. Commun. Pure Appl. Anal., 3(4):607–635, 2004. Zbl1063.35092MR2106292
  13. P. Cannarsa, P. Martinez, and J. Vancostenoble. Null controllability of degenerate heat equations. Adv. Differential Equations, 10(2):153–190, 2005. Zbl1145.35408MR2106129
  14. P. Cannarsa, P. Martinez, and J. Vancostenoble. Carleman estimates for a class of degenerate parabolic operators. SIAM J. Control Optim., 47(1):1–19, 2008. Zbl1168.35025MR2373460
  15. P. Cannarsa, P. Martinez, and J. Vancostenoble. Carleman estimates and null controllability for boundary-degenerate parabolic operators. C. R. Math. Acad. Sci. Paris, 347(3-4):147–152, 2009. Zbl1162.35330MR2538102
  16. A. Doubova, E. Fernández-Cara, and E. Zuazua. On the controllability of parabolic systems with a nonlinear term involving the state and the gradient. SIAM J. Control Optim., 42 (3):798–819, 2002. Zbl1038.93041MR1939871
  17. A. Doubova, A. Osses, and J.-P. Puel. Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients. ESAIM Control Optim. Calc. Var., 8:621–661, 2002. Zbl1092.93006MR1932966
  18. T. Duyckaerts, X. Zhang, and E. Zuazua. On the optimality of the observability inequalities for parabolic and hyperbolic systems with potentials. Ann. Inst. H. Poincaré : Analyse Nonlinéaire, 25:1–41, 2008. Zbl1248.93031MR2383077
  19. Sylvain Ervedoza. Control and stabilization properties for a singular heat equation with an inverse-square potential. Comm. Partial Differential Equations, 33(10-12):1996–2019, 2008. Zbl1170.35331MR2475327
  20. C. Fabre, J.P. Puel, and E. Zuazua. Approximate controllability of the semilinear heat equation. Proc. Roy. Soc. Edinburgh, 125A:31–61, 1995. Zbl0818.93032MR1318622
  21. H.O. Fattorini and D. Russel. Exact controllability theorems for linear parabolic equations in one space dimension. Arch. Rational Mech. Anal., 43:272–292, 1971. Zbl0231.93003MR335014
  22. E. Fernández-Cara and E. Zuazua. Null and approximate controllability for weakly blowing up semilinear heat equations. Ann. Inst. H. Poincaré Anal. Non Linéaire, 17:583–616, 2000. Zbl0970.93023MR1791879
  23. E. Fernández-Cara and E. Zuazua. The cost of approximate controllability for heat equations: The linear case. Advances in Differential Equations, 5(4-6):465–514, 2000. Zbl1007.93034MR1750109
  24. E. Fernández-Cara and E. Zuazua. On the null controllability of the one-dimensional heat equation with BV coefficients. Computational and Applied Mathematics, 12:167–190, 2002. Zbl1119.93311MR2009951
  25. C. Flores and L. de Teresa. Carleman estimates for degenerate parabolic equations with first order terms and applications. C. R. Math. Acad. Sci. Paris, 348(7-8):391–396, 2010. Zbl1188.35032MR2607025
  26. A.V. Fursikov and O.Y. Imanuvilov. Controllability of evolution equations. Lecture Notes Series, Seoul National University Research Institute of Mathematics Global Analysis Research Center, Seoul, 34, 1996. Zbl0862.49004MR1406566
  27. N. Garofalo. Unique continuation for a class of elliptic operators which degenerate on a manifold of arbitrary codimension. J. Differential Equations, 104(1):117–146, 1993. Zbl0788.35051MR1224123
  28. M. González-Burgos and L. de Teresa. Some results on controllability for linear and nonlinear heat equations in unbounded domains. Adv. Differential Equations, 12 (11):1201–1240, 2007. Zbl1170.93007MR2372238
  29. L. Hörmander. Hypoelliptic second order differential equations. Acta Math., 119:147–171, 1967. Zbl0156.10701MR222474
  30. O.Y. Imanuvilov. Boundary controllability of parabolic equations. Uspekhi. Mat. Nauk, 48(3(291)):211–212, 1993. MR1243631
  31. O.Y. Imanuvilov. Controllability of parabolic equations. Mat. Sb., 186(6):109–132, 1995. Zbl0845.35040MR1349016
  32. O.Y. Imanuvilov and M. Yamamoto. Carleman estimate for a parabolic equation in Sobolev spaces of negative order and its applications. Control of Nonlinear Distributed Parameter Systems, G. Chen et al. eds., Marcel-Dekker, pages 113–137, 2000. Zbl0977.93041MR1817179
  33. G. Lebeau and L. Robbiano. Contrôle exact de l’équation de la chaleur. Comm. P.D.E., 20:335–356, 1995. Zbl0819.35071MR1312710
  34. G. Lebeau and J. Le Rousseau. On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations. ESAIM:COCV (DOI:10.1051/cocv/2011168), 2011. Zbl1262.35206
  35. J.-L. Lions. Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles. Avant propos de P. Lelong. Dunod, Paris, 1968. Zbl0179.41801MR244606
  36. A. Lopez and E. Zuazua. Uniform null controllability for the one dimensional heat equation with rapidly oscillating periodic density. Annales IHP. Analyse non linéaire, 19 (5):543–580, 2002. Zbl1009.35009MR1922469
  37. P. Martinez and J. Vancostenoble. Carleman estimates for one-dimensional degenerate heat equations. J. Evol. Equ., 6(2):325–362, 2006. Zbl1179.93043MR2227700
  38. P. Martinez, J. Vancostonoble, and J.-P. Raymond. Regional null controllability of a linearized Crocco type equation. SIAM J. Control Optim., 42, no. 2:709–728, 2003. Zbl1037.93013MR1982289
  39. L. Miller. On the null-controllability of the heat equation in unbounded domains. Bulletin des Sciences Mathématiques, 129, 2:175–185, 2005. Zbl1079.35018MR2123266
  40. L. Miller. On exponential observability estimates for the heat semigroup with explicit rates. Rendiconti Lincei: Matematica e Applicazioni, 17, 4:351–366, 2006. Zbl1150.93006MR2287707
  41. J. Le Rousseau. Carleman estimates and controllability results for the one-dimensional heat equation with BV coefficients. J. Differential Equations, 233(2):417–447, 2007. Zbl1128.35020MR2292514
  42. J. Vancostenoble and E. Zuazua. Null controllability for the heat equation with singular inverse-square potentials. J. Funct. Anal., 254(7):1864–1902, 2008. Zbl1145.93009MR2397877
  43. C. Villani. Hypocoercivity, volume 202. Mem. Amer. Math. Soc., 2009. Zbl1197.35004MR2562709
  44. Zabczyk. Mathematical control theory: an introduction. Birkhäuser, 2000. Zbl1071.93500MR2348543
  45. E. Zuazua. Approximate controllability of the semilinear heat equation: boundary control. International Conference in honour of Prof. R. Glowinski, Computational Sciences for the 21st Century, M.O. Bristeau et al. eds., John Wiley and Sons, pages 738–747, 1997. Zbl0916.93016
  46. E. Zuazua. Finite dimensional null-controllability of the semilinear heat equation. J.Math. Pures et Appl., 76:237–264, 1997. Zbl0872.93014MR1441986
  47. C. Zuily. Uniqueness and non-uniqueness in the Cauchy problem. Boston Basel Stuttgart Birkhäuser, 1983. Zbl0521.35003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.