Some controllability results for the 2D Kolmogorov equation

K. Beauchard; E. Zuazua

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 5, page 1793-1815
  • ISSN: 0294-1449

How to cite

top

Beauchard, K., and Zuazua, E.. "Some controllability results for the 2D Kolmogorov equation." Annales de l'I.H.P. Analyse non linéaire 26.5 (2009): 1793-1815. <http://eudml.org/doc/78913>.

@article{Beauchard2009,
author = {Beauchard, K., Zuazua, E.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Kolmogorov equation; controllability; Carleman inequalities},
language = {eng},
number = {5},
pages = {1793-1815},
publisher = {Elsevier},
title = {Some controllability results for the 2D Kolmogorov equation},
url = {http://eudml.org/doc/78913},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Beauchard, K.
AU - Zuazua, E.
TI - Some controllability results for the 2D Kolmogorov equation
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 5
SP - 1793
EP - 1815
LA - eng
KW - Kolmogorov equation; controllability; Carleman inequalities
UR - http://eudml.org/doc/78913
ER -

References

top
  1. [1] Cabanillas V., de Menezes S., Zuazua E., Null controllability in unbounded domains for the semilinear heat equation with nonlinearities involving gradient terms, J. Optim. Theory Appl.110 (2) (2001) 245-264. Zbl0997.93048MR1846267
  2. [2] Coron J.-M., Control and Nonlinearity, Mathematical Surveys and Monographs, vol. 136, American Mathematical Society, 2007. Zbl1140.93002MR2302744
  3. [3] Coron J.-M., Guerrero S., Singular optimal control: a linear 1D parabolic-hyperbolic example, Asymptotic Anal.44 (3, 4) (2005) 237-257. Zbl1078.93009MR2176274
  4. [4] Doubova A., Fernández-Cara E., González-Burgos M., Zuazua E., On the controllability of parabolic systems with a nonlinear term involving the state and the gradient, SIAM J. Control Optim.42 (3) (2002) 798-819. Zbl1038.93041MR1939871
  5. [5] Duyckaerts T., Zhang X., Zuazua E., On the optimality of the observability inequalities for parabolic and hyperbolic systems with potentials, Ann. Inst. H. Poincaré Anal. Non Linéaire25 (2008) 141. Zbl1248.93031MR2383077
  6. [6] Fabre C., Puel J.-P., Zuazua E., Approximate controllability of the semilinear heat equation, Proc. Roy. Soc. Edinburgh Sect. A125 (1995) 31-61. Zbl0818.93032MR1318622
  7. [7] Fattorini H.O., Russell D., Exact controllability theorems for linear parabolic equations in one space dimension, Arch. Ration. Mech. Anal.43 (1971) 272-292. Zbl0231.93003MR335014
  8. [8] Fernández-Cara E., Zuazua E., Null and approximate controllability for weakly blowing up semilinear heat equations, Ann. Inst. H. Poincaré Anal. Non Linéaire17 (2000) 583-616. Zbl0970.93023MR1791879
  9. [9] Fernández-Cara E., Zuazua E., The cost of approximate controllability for heat equations: The linear case, Adv. Differential Equations5 (4–6) (2000) 465-514. Zbl1007.93034MR1750109
  10. [10] Fernández-Cara E., Zuazua E., On the null controllability of the one-dimensional heat equation with BV coefficients, Comput. Appl. Math.12 (2002) 167-190. Zbl1119.93311MR2009951
  11. [11] Fursikov A., Imanuvilov O.Y., Controllability of Evolution Equations, Lecture Notes Series, vol. 34, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1996. Zbl0862.49004MR1406566
  12. [12] González-Burgos M., de Teresa L., Some results on controllability for linear and nonlinear heat equations in unbounded domains, Adv. Differential Equations12 (11) (2007) 1201-1240. Zbl1170.93007MR2372238
  13. [13] Hörmander L., Hypoelliptic second order differential equations, Acta Math.119 (1967) 147-171. Zbl0156.10701MR222474
  14. [14] Imanuvilov O.Y., Boundary controllability of parabolic equations, Uspekhi Mat. Nauk48 (3(291)) (1993) 211-212. MR1243631
  15. [15] Imanuvilov O.Y., Controllability of parabolic equations, Mat. Sb.186 (6) (1995) 109-132. Zbl0845.35040MR1349016
  16. [16] Imanuvilov O.Y., Yamamoto M., Carleman estimate for a parabolic equation in Sobolev spaces of negative order and its applications, in: Chen G., (Eds.), Control of Nonlinear Distributed Parameter Systems, Marcel Dekker, 2000, pp. 113-137. Zbl0977.93041MR1817179
  17. [17] Lebeau G., Robbiano L., Contrôle exact de l'équation de la chaleur, Comm. Partial Differential Equations20 (1995) 335-356. Zbl0819.35071MR1312710
  18. [18] Lopez A., Zuazua E., Uniform null controllability for the one dimensional heat equation with rapidly oscillating periodic density, Ann. Inst. H. Poincaré Anal. Non Linéaire19 (5) (2002) 543-580. Zbl1009.35009MR1922469
  19. [19] Miller L., On the null-controllability of the heat equation in unbounded domains, Bull. Sci. Math.129 (2) (2005) 175-185. Zbl1079.35018MR2123266
  20. [20] Miller L., On exponential observability estimates for the heat semigroup with explicit rates, Rendiconti Lincei: Matematica e Applicazioni17 (4) (2006) 351-366. Zbl1150.93006MR2287707
  21. [21] Martinez P., Vancostonoble J., Raymond J.-P., Regional null controllability of a linearized Crocco type equation, SIAM J. Control Optim.42 (2003) 709-728. Zbl1037.93013MR1982289
  22. [22] Villani C., Hypocoercive diffusion operators, in: International Congress of Mathematicians, vol. III, Eur. Math. Soc., Zurich, 2006, pp. 473-498. Zbl1130.35027MR2275692
  23. [23] Zuazua E., Approximate controllability of the semilinear heat equation: boundary control, in: Bristeau M.O., (Eds.), International Conference in honour of Prof. R. Glowinski, Computational Sciences for the 21st Century, John Wiley and Sons, 1997, pp. 738-747. Zbl0916.93016
  24. [24] Zuazua E., Finite dimensional null-controllability of the semilinear heat equation, J. Math. Pures Appl.76 (1997) 237-264. Zbl0872.93014MR1441986

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.