Ondes de surface faiblement non-linéaires
Sylvie Benzoni-Gavage[1]; Jean-François Coulombel[2]; Nikolay Tzvetkov[3]
- [1] Université de Lyon, Université Lyon 1 & CNRS UMR 5208 Institut Camille Jordan 43 boulevard du 11 novembre 1918 69622 Villeurbanne cedex France
- [2] CNRS UMR 6629 & Université de Nantes Laboratoire de Mathématiques Jean Leray 2 rue de la Houssinière BP 92208 44322 Nantes Cedex 3 France
- [3] Université de Cergy-Pontoise & UMR CNRS 8088 Département de Mathématiques 2 avenue Adolphe Chauvin 95302 Cergy-Pontoise Cedex France
Séminaire Laurent Schwartz — EDP et applications (2011-2012)
- Volume: 2011-2012, page 1-13
- ISSN: 2266-0607
Access Full Article
topAbstract
topHow to cite
topBenzoni-Gavage, Sylvie, Coulombel, Jean-François, and Tzvetkov, Nikolay. "Ondes de surface faiblement non-linéaires." Séminaire Laurent Schwartz — EDP et applications 2011-2012 (2011-2012): 1-13. <http://eudml.org/doc/251179>.
@article{Benzoni2011-2012,
abstract = {Cet exposé concerne l’approximation faiblement non-linéaire de problèmes aux limites invariants par changement d’échelles.},
affiliation = {Université de Lyon, Université Lyon 1 & CNRS UMR 5208 Institut Camille Jordan 43 boulevard du 11 novembre 1918 69622 Villeurbanne cedex France; CNRS UMR 6629 & Université de Nantes Laboratoire de Mathématiques Jean Leray 2 rue de la Houssinière BP 92208 44322 Nantes Cedex 3 France; Université de Cergy-Pontoise & UMR CNRS 8088 Département de Mathématiques 2 avenue Adolphe Chauvin 95302 Cergy-Pontoise Cedex France},
author = {Benzoni-Gavage, Sylvie, Coulombel, Jean-François, Tzvetkov, Nikolay},
journal = {Séminaire Laurent Schwartz — EDP et applications},
language = {fre},
pages = {1-13},
publisher = {Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Ondes de surface faiblement non-linéaires},
url = {http://eudml.org/doc/251179},
volume = {2011-2012},
year = {2011-2012},
}
TY - JOUR
AU - Benzoni-Gavage, Sylvie
AU - Coulombel, Jean-François
AU - Tzvetkov, Nikolay
TI - Ondes de surface faiblement non-linéaires
JO - Séminaire Laurent Schwartz — EDP et applications
PY - 2011-2012
PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2011-2012
SP - 1
EP - 13
AB - Cet exposé concerne l’approximation faiblement non-linéaire de problèmes aux limites invariants par changement d’échelles.
LA - fre
UR - http://eudml.org/doc/251179
ER -
References
top- G. Alì and J. K. Hunter. Nonlinear surface waves on a tangential discontinuity in magnetohydrodynamics. Quart. Appl. Math., 61(3) :451–474, 2003. Zbl1057.35037MR1999831
- S. Benzoni-Gavage. Local well-posedness of nonlocal Burgers equations. Differential Integral Equations, 22(3-4) :303–320, 2009. Zbl1240.35446MR2492823
- S. Benzoni-Gavage and M. Rosini. Weakly nonlinear surface waves and subsonic phase boundaries. Comput. Math. Appl., 57(3-4) :1463–1484, 2009. Zbl1186.76658MR2509960
- S. Benzoni-Gavage, D. Serre. Multidimensional hyperbolic partial differential equations. Oxford Mathematical Monographs. Oxford University Press, 2007. Zbl1113.35001MR2284507
- Sylvie Benzoni-Gavage and Jean-François Coulombel. On the amplitude equations for weakly nonlinear surface waves. Archive for Rational Mechanics and Analysis, 2012. Zbl06102052MR2960035
- Sylvie Benzoni-Gavage, Jean-François Coulombel, and Nikolay Tzvetkov. Ill-posedness of nonlocal Burgers equations. Adv. Math., 227(6) :2220–2240, 2011. Zbl1228.35174MR2807088
- A. Castro and D. Córdoba. Global existence, singularities and ill-posedness for a nonlocal flux. Adv. Math., 219(6) :1916–1936, 2008. Zbl1186.35002MR2456270
- R. Hersh. Mixed problems in several variables. J. Math. Mech., 12 :317–334, 1963. Zbl0149.06602MR147790
- J. K. Hunter. Nonlinear surface waves. In Current progress in hyberbolic systems : Riemann problems and computations (Brunswick, ME, 1988), volume 100 of Contemp. Math., pages 185–202. Amer. Math. Soc., 1989. Zbl0703.35107MR1033516
- J. K. Hunter. Short-time existence for scale-invariant Hamiltonian waves. J. Hyperbolic Differ. Equ., 3(2) :247–267, 2006. Zbl1098.35005MR2229856
- R. W. Lardner. Nonlinear surface waves on an elastic solid. Internat. J. Engrg. Sci., 21(11) :1331–1342, 1983. Zbl0529.73022MR718407
- A. Marcou. Rigorous weakly nonlinear geometric optics for surface waves. Asymptotic Anal., 69(3-4) :125–174, 2010. Zbl1222.35118MR2760337
- D. F. Parker. Waveform evolution for nonlinear surface acoustic waves. Int. J. Engng Sci., 26(1) :59–75, 1988. Zbl0627.73022
- D. F. Parker and J. K. Hunter. Scale invariant elastic surface waves. In Proceedings of the IX International Conference on Waves and Stability in Continuous Media (Bari, 1997), number 57, pages 381–392, 1998. Zbl0945.74036MR1708535
- D. F. Parker and F. M. Talbot. Analysis and computation for nonlinear elastic surface waves of permanent form. J. Elasticity, 15(4) :389–426, 1985. Zbl0587.73032MR817377
- M. V. Safonov. The abstract Cauchy-Kovalevskaya theorem in a weighted Banach space. Comm. Pure Appl. Math., 48(6) :629–637, 1995. Zbl0836.35004MR1338472
- D. Serre. Second order initial boundary-value problems of variational type. J. Funct. Anal., 236(2) :409–446, 2006. Zbl1254.35138MR2240169
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.