Controllability of a parabolic system with a diffusive interface

Jérôme Le Rousseau[1]; Matthieu Léautaud[2]; Luc Robbiano[3]

  • [1] Université d’Orléans Laboratoire de Mathématiques - Analyse Probabilités, Modélisation - Orléans, CNRS UMR 7349 Fédération Denis-Poisson, FR CNRS 2964 B.P. 6759 45067 Orléans cedex 2 France
  • [2] Université Paris-Sud Mathématiques, Bâtiment 425 91405 Orsay Cedex France
  • [3] Université de Versailles Saint-Quentin Laboratoire de Mathématiques de Versailles CNRS UMR 8100 45 Avenue des États-Unis 78035 Versailles France

Séminaire Laurent Schwartz — EDP et applications (2011-2012)

  • Volume: 2011-2012, page 1-20
  • ISSN: 2266-0607

Abstract

top
We consider a linear parabolic transmission problem across an interface of codimension one in a bounded domain or on a Riemannian manifold, where the transmission conditions involve an additional parabolic operator on the interface. This system is an idealization of a three-layer model in which the central layer has a small thickness δ . We prove a Carleman estimate in the neighborhood of the interface for an associated elliptic operator by means of partial estimates in several microlocal regions. In turn, from the Carleman estimate, we obtain a spectral inequality that yields the null-controllability of the parabolic system. These results are uniform with respect to the small parameter δ .

How to cite

top

Le Rousseau, Jérôme, Léautaud, Matthieu, and Robbiano, Luc. "Controllability of a parabolic system with a diffusive interface." Séminaire Laurent Schwartz — EDP et applications 2011-2012 (2011-2012): 1-20. <http://eudml.org/doc/251187>.

@article{LeRousseau2011-2012,
abstract = {We consider a linear parabolic transmission problem across an interface of codimension one in a bounded domain or on a Riemannian manifold, where the transmission conditions involve an additional parabolic operator on the interface. This system is an idealization of a three-layer model in which the central layer has a small thickness $\delta $. We prove a Carleman estimate in the neighborhood of the interface for an associated elliptic operator by means of partial estimates in several microlocal regions. In turn, from the Carleman estimate, we obtain a spectral inequality that yields the null-controllability of the parabolic system. These results are uniform with respect to the small parameter $\delta $.},
affiliation = {Université d’Orléans Laboratoire de Mathématiques - Analyse Probabilités, Modélisation - Orléans, CNRS UMR 7349 Fédération Denis-Poisson, FR CNRS 2964 B.P. 6759 45067 Orléans cedex 2 France; Université Paris-Sud Mathématiques, Bâtiment 425 91405 Orsay Cedex France; Université de Versailles Saint-Quentin Laboratoire de Mathématiques de Versailles CNRS UMR 8100 45 Avenue des États-Unis 78035 Versailles France},
author = {Le Rousseau, Jérôme, Léautaud, Matthieu, Robbiano, Luc},
journal = {Séminaire Laurent Schwartz — EDP et applications},
keywords = {transmission problem; Carleman estimate; null controllability},
language = {eng},
pages = {1-20},
publisher = {Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Controllability of a parabolic system with a diffusive interface},
url = {http://eudml.org/doc/251187},
volume = {2011-2012},
year = {2011-2012},
}

TY - JOUR
AU - Le Rousseau, Jérôme
AU - Léautaud, Matthieu
AU - Robbiano, Luc
TI - Controllability of a parabolic system with a diffusive interface
JO - Séminaire Laurent Schwartz — EDP et applications
PY - 2011-2012
PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2011-2012
SP - 1
EP - 20
AB - We consider a linear parabolic transmission problem across an interface of codimension one in a bounded domain or on a Riemannian manifold, where the transmission conditions involve an additional parabolic operator on the interface. This system is an idealization of a three-layer model in which the central layer has a small thickness $\delta $. We prove a Carleman estimate in the neighborhood of the interface for an associated elliptic operator by means of partial estimates in several microlocal regions. In turn, from the Carleman estimate, we obtain a spectral inequality that yields the null-controllability of the parabolic system. These results are uniform with respect to the small parameter $\delta $.
LA - eng
KW - transmission problem; Carleman estimate; null controllability
UR - http://eudml.org/doc/251187
ER -

References

top
  1. M. Bellassoued, Carleman estimates and distribution of resonances for the transparent obstacle and application to the stabilization, Asymptotic Anal. 35 (2003), 257–279. Zbl1137.35388MR2011790
  2. A. Benabdallah, Y. Dermenjian, and J. Le Rousseau, Carleman estimates for the one-dimensional heat equation with a discontinuous coefficient and applications to controllability and an inverse problem, J. Math. Anal. Appl. 336 (2007), 865–887. Zbl1189.35349MR2352986
  3. —, On the controllability of linear parabolic equations with an arbitrary control location for stratified media, C. R. Acad. Sci. Paris, Ser I. 344 (2007), 357–362. Zbl1115.35055MR2310670
  4. —, Carleman estimates for stratified media, J. Funct. Anal. 260 (2011), 3645–3677. Zbl1218.35238MR2781972
  5. A. Benabdallah, P. Gaitan, and J. Le Rousseau, Stability of discontinuous diffusion coefficients and initial conditions in an inverse problem for the heat equation, SIAM J. Control Optim. 46 (2007), 1849–1881. Zbl1155.35485MR2361996
  6. A. Doubova, A. Osses, and J.-P. Puel, Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients, ESAIM Control Optim. Calc. Var. 8 (2002), 621–661. Zbl1092.93006MR1932966
  7. L. Hörmander, Linear Partial Differential Operators, Springer-Verlag, Berlin, 1963. Zbl0321.35001MR404822
  8. —, The Analysis of Linear Partial Differential Operators, vol. III, Springer-Verlag, 1985, Second printing 1994. 
  9. —, The Analysis of Linear Partial Differential Operators, vol. IV, Springer-Verlag, 1985. 
  10. D. Jerison and G. Lebeau, Harmonic analysis and partial differential equations (Chicago, IL, 1996), Chicago Lectures in Mathematics, ch. Nodal sets of sums of eigenfunctions, pp. 223–239, The University of Chicago Press, Chicago, 1999. Zbl0946.35055MR1743865
  11. H. Koch and E. Zuazua, A hybrid system of pde’s arising in multi-structure interaction: coupling of wave equations in n and n - 1 space dimensions, Recent trends in partial differential equations, Contemp. Math. 409 (2006), 55–77. Zbl1108.35110MR2243949
  12. J. Le Rousseau, Carleman estimates and controllability results for the one-dimensional heat equation with B V coefficients, J. Differential Equations 233 (2007), 417–447. Zbl1128.35020MR2292514
  13. J. Le Rousseau and G. Lebeau, On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations, ESAIM Control Optim. Calc. Var., DOI:10.1051/cocv/2011168 (2011). Zbl1262.35206
  14. J. Le Rousseau and N. Lerner, Carleman estimates for anisotropic elliptic operators with jumps at an interface, Preprint (2011). Zbl1319.47038
  15. J. Le Rousseau and L. Robbiano, Carleman estimate for elliptic operators with coefficents with jumps at an interface in arbitrary dimension and application to the null controllability of linear parabolic equations, Arch. Rational Mech. Anal. 105 (2010), 953–990. Zbl1202.35336MR2591978
  16. —, Local and global Carleman estimates for parabolic operators with coefficients with jumps at interfaces, Invent. Math. 183 (2011), 245–336. Zbl1218.35054MR2772083
  17. M. Léautaud, Spectral inequalities for non-selfadjoint elliptic operators and application to the null-controllability of parabolic systems, J. Funct. Anal. 258 (2010), 2739–2778. Zbl1185.35153MR2593342
  18. G. Lebeau, Équation des ondes amorties, Algebraic and geometric methods in mathematical physics (Kaciveli, 1993), Math. Phys. Stud., vol. 19, Kluwer Acad. Publ., Dordrecht, 1996, pp. 73–109. Zbl0863.58068MR1385677
  19. G. Lebeau and L. Robbiano, Contrôle exact de l’équation de la chaleur, Comm. Partial Differential Equations 20 (1995), 335–356. Zbl0819.35071MR1312710
  20. —, Stabilisation de l’équation des ondes par le bord, Duke Math. J. 86 (1997), 465–491. MR1432305
  21. G. Lebeau and E. Zuazua, Null-controllability of a system of linear thermoelasticity, Arch. Rational Mech. Anal. 141 (1998), 297–329. Zbl1064.93501MR1620510
  22. V. Lescarret and E. Zuazua, Numerical scheme for waves in multi-dimensional media: convergence in asymmetric spaces, Preprint (2010). Zbl1311.65112
  23. L. Miller, On the controllability of anomalous diffusions generated by the fractional laplacian, Mathematics of Control, Signals, and Systems 3 (2006), 260–271. Zbl1105.93015MR2272076
  24. —, A direct Lebeau-Robbiano strategy for the observability of heat-like semigroups, Discrete Contin. Dyn. Syst. Ser. B 14 (2010), no. 4, 1465–1485. Zbl1219.93017MR2679651
  25. G. Tenenbaum and M. Tucsnak, On the null-controllability of diffusion equations, ESAIM, Control Optim. Calc. Var., DOI: 10.1051/cocv/2010035 (2011). Zbl1236.93025MR2859866

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.