On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations∗∗∗

Jérôme Le Rousseau; Gilles Lebeau

ESAIM: Control, Optimisation and Calculus of Variations (2012)

  • Volume: 18, Issue: 3, page 712-747
  • ISSN: 1292-8119

Abstract

top
Local and global Carleman estimates play a central role in the study of some partial differential equations regarding questions such as unique continuation and controllability. We survey and prove such estimates in the case of elliptic and parabolic operators by means of semi-classical microlocal techniques. Optimality results for these estimates and some of their consequences are presented. We point out the connexion of these optimality results to the local phase-space geometry after conjugation with the weight function. Firstly, we introduce local Carleman estimates for elliptic operators and deduce unique continuation properties as well as interpolation inequalities. These latter inequalities yield a remarkable spectral inequality and the null controllability of the heat equation. Secondly, we prove Carleman estimates for parabolic operators. We state them locally in space at first, and patch them together to obtain a global estimate. This second approach also yields the null controllability of the heat equation.

How to cite

top

Le Rousseau, Jérôme, and Lebeau, Gilles. "On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations∗∗∗." ESAIM: Control, Optimisation and Calculus of Variations 18.3 (2012): 712-747. <http://eudml.org/doc/244354>.

@article{LeRousseau2012,
abstract = {Local and global Carleman estimates play a central role in the study of some partial differential equations regarding questions such as unique continuation and controllability. We survey and prove such estimates in the case of elliptic and parabolic operators by means of semi-classical microlocal techniques. Optimality results for these estimates and some of their consequences are presented. We point out the connexion of these optimality results to the local phase-space geometry after conjugation with the weight function. Firstly, we introduce local Carleman estimates for elliptic operators and deduce unique continuation properties as well as interpolation inequalities. These latter inequalities yield a remarkable spectral inequality and the null controllability of the heat equation. Secondly, we prove Carleman estimates for parabolic operators. We state them locally in space at first, and patch them together to obtain a global estimate. This second approach also yields the null controllability of the heat equation. },
author = {Le Rousseau, Jérôme, Lebeau, Gilles},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Carleman estimates; semiclassical analysis; elliptic operators; parabolic operators; controllability; observability; observability inequality},
language = {eng},
month = {11},
number = {3},
pages = {712-747},
publisher = {EDP Sciences},
title = {On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations∗∗∗},
url = {http://eudml.org/doc/244354},
volume = {18},
year = {2012},
}

TY - JOUR
AU - Le Rousseau, Jérôme
AU - Lebeau, Gilles
TI - On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations∗∗∗
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2012/11//
PB - EDP Sciences
VL - 18
IS - 3
SP - 712
EP - 747
AB - Local and global Carleman estimates play a central role in the study of some partial differential equations regarding questions such as unique continuation and controllability. We survey and prove such estimates in the case of elliptic and parabolic operators by means of semi-classical microlocal techniques. Optimality results for these estimates and some of their consequences are presented. We point out the connexion of these optimality results to the local phase-space geometry after conjugation with the weight function. Firstly, we introduce local Carleman estimates for elliptic operators and deduce unique continuation properties as well as interpolation inequalities. These latter inequalities yield a remarkable spectral inequality and the null controllability of the heat equation. Secondly, we prove Carleman estimates for parabolic operators. We state them locally in space at first, and patch them together to obtain a global estimate. This second approach also yields the null controllability of the heat equation.
LA - eng
KW - Carleman estimates; semiclassical analysis; elliptic operators; parabolic operators; controllability; observability; observability inequality
UR - http://eudml.org/doc/244354
ER -

References

top
  1. S. Agmon, Lectures on Elliptic Boundary Values Problems. Van Nostrand (1965).  
  2. S. Alinhac and P. Gérard, Opérateurs Pseudo-Différentiels et Théorème de Nash-Moser. Éditions du CNRS (1991).  
  3. J.-P. Aubin and I. Ekeland, Applied Non Linear Analysis. John Wiley & Sons, New York (1984).  
  4. V. Barbu, Exact controllability of the superlinear heat equation. Appl. Math. Optim.42 (2000) 73–89.  
  5. M. Bellassoued, Carleman estimates and distribution of resonances for the transparent obstacle and application to the stabilization. Asymptotic Anal.35 (2003) 257–279.  
  6. A. Benabdallah and M.G. Naso, Null controllability of a thermoelastic plate. Abstr. Appl. Anal.7 (2002) 585–599.  
  7. A. Benabdallah, Y. Dermenjian and J. Le Rousseau, Carleman estimates for the one-dimensional heat equation with a discontinuous coefficient and applications to controllability and an inverse problem. J. Math. Anal. Appl.336 (2007) 865–887.  
  8. A. Benabdallah, Y. Dermenjian and J. Le Rousseau, On the controllability of linear parabolic equations with an arbitrary control location for stratified media. C. R. Acad. Sci. Paris, Ser. I344 (2007) 357–362.  
  9. M. Boulakia and A. Osses, Local null controllability of a two-dimensional fluid-structure interaction problem. ESAIM Control Optim. Calc. Var.14 (2008) 1–42.  
  10. H. Brezis, Analyse Fonctionnelle. Masson, Paris (1983).  
  11. T. Carleman, Sur un problème d’unicité pour les systèmes d’équations aux dérivées partielles à deux variables indépendantes. Ark. Mat. Astr. Fys.26B (1939) 1–9.  
  12. L. de Teresa, Insensitizing controls for a semilinear heat equation. Comm. Partial Differential Equations25 (2000) 39–72.  
  13. M. Dimassi and J. Sjöstrand, Spectral Asymptotics in the Semi-classical Limit, London Mathematical Society Lecture Note Series268. Cambridge University Press, Cambridge (1999).  
  14. A. Doubova, E. Fernandez-Cara, M. Gonzales-Burgos and E. Zuazua, On the controllability of parabolic systems with a nonlinear term involving the state and the gradient. SIAM J. Control Optim.41 (2002) 798–819.  
  15. A. Doubova, A. Osses and J.-P. Puel, Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients. ESAIM : COCV8 (2002) 621–661.  
  16. E. Fernández-Cara and S. Guerrero, Global Carleman inequalities for parabolic systems and application to controllability. SIAM J. Control Optim.45 (2006) 1395–1446.  
  17. E. Fernández-Cara and E. Zuazua, The cost of approximate controllability for heat equations : the linear case. Adv. Differential Equations5 (2000) 465–514.  
  18. E. Fernández-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations. Ann. Inst. Henri Poincaré, Analyse non linéaire17 (2000) 583–616.  
  19. E. Fernández-Cara, S. Guerrero, O.Yu. Imanuvilov and J.-P. Puel, Local exact controllability of the Navier-Stokes system. J. Math. Pures Appl.83 (2004) 1501–1542.  
  20. E. Fernández-Cara, S. Guerrero, O.Yu. Imanuvilov and J.-P. Puel, Some controllability results for the N-dimensional Navier-Stokes and Boussinesq systems with N − 1 scalar controls. SIAM J. Control Optim.45 (2006) 146–173.  
  21. C. Fabre and G. Lebeau, Prolongement unique des solutions de l’equation de Stokes. Comm. Partial Differential Equations21 (1996) 573–596.  
  22. A. Fursikov and O.Yu. Imanuvilov, Controllability of evolution equations, Lecture Notes34. Seoul National University, Korea (1996).  
  23. M. González-Burgos and R. Pérez-García, Controllability results for some nonlinear coupled parabolic systems by one control force. Asymptotic Anal.46 (2006) 123–162.  
  24. A. Grigis and J. Sjöstrand, Microlocal Analysis for Differential Operators. Cambridge University Press, Cambridge (1994).  
  25. L. Hörmander, Linear Partial Differential Operators. Springer-Verlag, Berlin (1963).  
  26. L. Hörmander, The Analysis of Linear Partial Differential OperatorsIV. Springer-Verlag (1985).  
  27. L. Hörmander, The Analysis of Linear Partial Differential OperatorsIII. Springer-Verlag (1985). 2nd printing 1994.  
  28. L. Hörmander, The Analysis of Linear Partial Differential OperatorsI. 2nd edition, Springer-Verlag (1990).  
  29. O.Yu. Imanuvilov, Remarks on the exact controllability of Navier-Stokes equations. ESAIM : COCV6 (2001) 39–72.  
  30. O.Yu. Imanuvilov and T. Takahashi, Exact controllability of a fluid-rigid body system. J. Math. Pures Appl.87 (2007) 408–437.  
  31. D. Jerison and G. Lebeau, Harmonic analysis and partial differential equations (Chicago, IL, 1996). chapter Nodal sets of sums of eigenfunctions, Chicago Lectures in Mathematics, The University of Chicago Press, Chicago (1999) 223–239.  
  32. F. Ammar Khodja, A. Benabdallah and C. Dupaix, Null controllability of some reaction-diffusion systems with one control force. J. Math. Anal. Appl.320 (2006) 928–943.  
  33. F. Ammar Khodja, A. Benabdallah, C. Dupaix and I. Kostin, Null-controllability of some systems of parabolic type by one control force. ESAIM : COCV11 (2005) 426–448.  
  34. J. Le Rousseau, Carleman estimates and controllability results for the one-dimensional heat equation with BV coefficients. J. Differential Equations233 (2007) 417–447.  
  35. J. Le Rousseau, and L. Robbiano, Carleman estimate for elliptic operators with coefficents with jumps at an interface in arbitrary dimension and application to the null controllability of linear parabolic equations. Arch. Rational Mech. Anal.105 (2010) 953–990.  
  36. J. Le Rousseau and L. Robbiano, Local and global Carleman estimates for parabolic operators with coefficients with jumps at interfaces. Invent. Math.183 (2011) 245–336.  
  37. M. Léautaud, Spectral inequalities for non-selfadjoint elliptic operators and application to the null-controllability of parabolic systems. J. Funct. Anal.258 (2010) 2739–2778.  
  38. G. Lebeau, Cours sur les inégalités de Carleman, Mastère Equations aux Dérivées Partielles et Applications. Faculté des Sciences de Tunis, Tunisie (2005).  
  39. G. Lebeau and L. Robbiano, Contrôle exact de l’équation de la chaleur. Comm. Partial Differential Equations20 (1995) 335–356.  
  40. G. Lebeau and L. Robbiano, Stabilisation de l’équation des ondes par le bord. Duke Math. J.86 (1997) 465–491.  
  41. G. Lebeau and E. Zuazua, Null-controllability of a system of linear thermoelasticity. Arch. Rational Mech. Anal.141 (1998) 297–329.  
  42. A. Martinez, An Introduction to Semiclassical and Microlocal Analysis. Springer-Verlag (2002).  
  43. S. Micu and E. Zuazua, On the lack of null-controllability of the heat equation on the half space. Port. Math. (N.S.)58 (2001) 1–24.  
  44. L. Miller, On the null-controllability of the heat equation in unbounded domains. Bull. Sci. Math.129 (2005) 175–185.  
  45. L. Miller, On the controllability of anomalous diffusions generated by the fractional laplacian. Mathematics of Control, Signals, and Systems3 (2006) 260–271.  
  46. L. Miller, Unique continuation estimates for sums of semiclassical eigenfunctions and null-controllability from cones. Preprint (2008).  URIhttp://hal.archives-ouvertes.fr/hal-00411840/fr.
  47. L. Miller, A direct Lebeau-Robbiano strategy for the observability of heat-like semigroups. Discrete Contin. Dyn. Syst. Ser. B14 (2010) 1465–1485.  
  48. L. Robbiano, Théorème d’unicité adapté au contrôle des solutions des problèmes hyperboliques. Comm. Partial Differential Equations16 (1991) 789–800.  
  49. L. Robbiano, Fonction de coût et contrôle des solutions des équations hyperboliques. Asymptotic Anal.10 (1995) 95–115.  
  50. D. Robert, Autour de l’Approximation Semi-Classique, Progress in Mathematics68. Birkhäuser Boston, Boston, MA (1987).  
  51. J.-C. Saut and B. Scheurer, Unique continuation for some evolution equations. J. Differential Equations66 (1987) 118–139.  
  52. M.A. Shubin, Pseudodifferential Operators and Spectral Theory. 2nd edition, Springer-Verlag, Berlin Heidelberg (2001).  
  53. D. Tataru, Carleman estimates and unique continuation for the Schroedinger equation. Differential Integral Equations8 (1995) 901–905.  
  54. D. Tataru, Unique continuation for solutions to PDE’s; between Hörmander’s theorem and Holmgren’s theorem. Comm. Partial Differential Equations20 (1995) 855–884.  
  55. M.E. Taylor, Pseudodifferential Operators. Princeton University Press, Princeton, New Jersey (1981).  
  56. M.E. Taylor, Partial Differential Equations 2 : Qualitative Studies of Linear Equations, Applied Mathematical Sciences116. Springer-Verlag, New-York (1996).  
  57. G. Tenenbaum and M. Tucsnak, On the null-controllability of diffusion equations. preprint (2009).  
  58. F. Trèves, Topological Vector Spaces, Distributions and Kernels. Academic Press, New York (1967).  
  59. C. Zuily, Uniqueness and Non Uniqueness in the Cauchy Problem. Birkhäuser, Progress in mathematics (1983).  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.