Random Walks and Trees

Zhan Shi

ESAIM: Proceedings (2011)

  • Volume: 31, page 1-39
  • ISSN: 1270-900X

Abstract

top
These notes provide an elementary and self-contained introduction to branching random walks. Section 1 gives a brief overview of Galton–Watson trees, whereas Section 2 presents the classical law of large numbers for branching random walks. These two short sections are not exactly indispensable, but they introduce the idea of using size-biased trees, thus giving motivations and an avant-goût to the main part, Section 3, where branching random walks are studied from a deeper point of view, and are connected to the model of directed polymers on a tree. Tree-related random processes form a rich and exciting research subject. These notes cover only special topics. For a general account, we refer to the St-Flour lecture notes of Peres [47] and to the forthcoming book of Lyons and Peres [42], as well as to Duquesne and Le Gall [23] and Le Gall [37] for continuous random trees.

How to cite

top

Shi, Zhan. Emilia Caballero, Ma., et al, eds. "Random Walks and Trees." ESAIM: Proceedings 31 (2011): 1-39. <http://eudml.org/doc/251224>.

@article{Shi2011,
abstract = {These notes provide an elementary and self-contained introduction to branching random walks. Section 1 gives a brief overview of Galton–Watson trees, whereas Section 2 presents the classical law of large numbers for branching random walks. These two short sections are not exactly indispensable, but they introduce the idea of using size-biased trees, thus giving motivations and an avant-goût to the main part, Section 3, where branching random walks are studied from a deeper point of view, and are connected to the model of directed polymers on a tree. Tree-related random processes form a rich and exciting research subject. These notes cover only special topics. For a general account, we refer to the St-Flour lecture notes of Peres [47] and to the forthcoming book of Lyons and Peres [42], as well as to Duquesne and Le Gall [23] and Le Gall [37] for continuous random trees.},
author = {Shi, Zhan},
editor = {Emilia Caballero, Ma., Chaumont, Loïc, Hernández-Hernández, Daniel, Rivero, Víctor},
journal = {ESAIM: Proceedings},
keywords = {branching random walks; Galton-Watson trees; law of large numbers; central limit theorem},
language = {eng},
month = {3},
pages = {1-39},
publisher = {EDP Sciences},
title = {Random Walks and Trees},
url = {http://eudml.org/doc/251224},
volume = {31},
year = {2011},
}

TY - JOUR
AU - Shi, Zhan
AU - Emilia Caballero, Ma.
AU - Chaumont, Loïc
AU - Hernández-Hernández, Daniel
AU - Rivero, Víctor
TI - Random Walks and Trees
JO - ESAIM: Proceedings
DA - 2011/3//
PB - EDP Sciences
VL - 31
SP - 1
EP - 39
AB - These notes provide an elementary and self-contained introduction to branching random walks. Section 1 gives a brief overview of Galton–Watson trees, whereas Section 2 presents the classical law of large numbers for branching random walks. These two short sections are not exactly indispensable, but they introduce the idea of using size-biased trees, thus giving motivations and an avant-goût to the main part, Section 3, where branching random walks are studied from a deeper point of view, and are connected to the model of directed polymers on a tree. Tree-related random processes form a rich and exciting research subject. These notes cover only special topics. For a general account, we refer to the St-Flour lecture notes of Peres [47] and to the forthcoming book of Lyons and Peres [42], as well as to Duquesne and Le Gall [23] and Le Gall [37] for continuous random trees.
LA - eng
KW - branching random walks; Galton-Watson trees; law of large numbers; central limit theorem
UR - http://eudml.org/doc/251224
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.