Search for different links with the same Jones' type polynomials: Ideas from graph theory and statistical mechanics

Józef Przytycki

Banach Center Publications (1995)

  • Volume: 34, Issue: 1, page 121-148
  • ISSN: 0137-6934

Abstract

top
We describe in this talk three methods of constructing different links with the same Jones type invariant. All three can be thought as generalizations of mutation. The first combines the satellite construction with mutation. The second uses the notion of rotant, taken from the graph theory, the third, invented by Jones, transplants into knot theory the idea of the Yang-Baxter equation with the spectral parameter (idea employed by Baxter in the theory of solvable models in statistical mechanics). We extend the Jones result and relate it to Traczyk's work on rotors of links. We also show further applications of the Jones idea, e.g. to 3-string links in the solid torus. We stress the fact that ideas coming from various areas of mathematics (and theoretical physics) has been fruitfully used in knot theory, and vice versa.

How to cite

top

Przytycki, Józef. "Search for different links with the same Jones' type polynomials: Ideas from graph theory and statistical mechanics." Banach Center Publications 34.1 (1995): 121-148. <http://eudml.org/doc/251307>.

@article{Przytycki1995,
abstract = {We describe in this talk three methods of constructing different links with the same Jones type invariant. All three can be thought as generalizations of mutation. The first combines the satellite construction with mutation. The second uses the notion of rotant, taken from the graph theory, the third, invented by Jones, transplants into knot theory the idea of the Yang-Baxter equation with the spectral parameter (idea employed by Baxter in the theory of solvable models in statistical mechanics). We extend the Jones result and relate it to Traczyk's work on rotors of links. We also show further applications of the Jones idea, e.g. to 3-string links in the solid torus. We stress the fact that ideas coming from various areas of mathematics (and theoretical physics) has been fruitfully used in knot theory, and vice versa.},
author = {Przytycki, Józef},
journal = {Banach Center Publications},
keywords = {knots; Jones polynomial; mutation; links},
language = {eng},
number = {1},
pages = {121-148},
title = {Search for different links with the same Jones' type polynomials: Ideas from graph theory and statistical mechanics},
url = {http://eudml.org/doc/251307},
volume = {34},
year = {1995},
}

TY - JOUR
AU - Przytycki, Józef
TI - Search for different links with the same Jones' type polynomials: Ideas from graph theory and statistical mechanics
JO - Banach Center Publications
PY - 1995
VL - 34
IS - 1
SP - 121
EP - 148
AB - We describe in this talk three methods of constructing different links with the same Jones type invariant. All three can be thought as generalizations of mutation. The first combines the satellite construction with mutation. The second uses the notion of rotant, taken from the graph theory, the third, invented by Jones, transplants into knot theory the idea of the Yang-Baxter equation with the spectral parameter (idea employed by Baxter in the theory of solvable models in statistical mechanics). We extend the Jones result and relate it to Traczyk's work on rotors of links. We also show further applications of the Jones idea, e.g. to 3-string links in the solid torus. We stress the fact that ideas coming from various areas of mathematics (and theoretical physics) has been fruitfully used in knot theory, and vice versa.
LA - eng
KW - knots; Jones polynomial; mutation; links
UR - http://eudml.org/doc/251307
ER -

References

top
  1. [1] D. Albers, John Horton Conway, Talking a good game, Math. Horizons, Spring 1994, Published by the M.A.A. 
  2. [2] R. P. Anstee, J. H. Przytycki, D. Rolfsen, Knot polynomials and generalized mutation, Topology Appl., 32 (1989), 237-249. Zbl0638.57006
  3. [3] R. Baxter, Exactly solved models in statistical mechanics, Academic Press, London, 1982. Zbl0538.60093
  4. [4] N. Bourbaki, Groupes et algèbres de Lie, VI: Groupes de Coxeter et systèmes de Tits, Herman Paris, 1968. Zbl0186.33001
  5. [5] R. I. Brooks, C. A. B. Smith, A. H. Stone, W. T. Tutte, The dissection of rectangles into squares, Duke Math. J. 7 (1940), 312-340. Zbl0024.16501
  6. [6] J. H. Conway, An enumeration of knots and links, Computational problems in abstract algebra (ed. J. Leech), Pergamon Press (1969), 329-358. 
  7. [7] P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. Millett, A. Ocneanu, A new polynomial invariant of knots and links, Bull. Amer. Math. Soc. 12 (1985), 239-249. Zbl0572.57002
  8. [8] J. Hoste, A polynomial invariant of knots and links, Pacific J. Math. 124 (1986), 295-320. Zbl0614.57005
  9. [9] J. Hoste, J. H. Przytycki, A survey of skein modules of 3-manifolds, in: Knots 90, De Gruyter, Berlin - New York 1992, 363-379. Zbl0772.57022
  10. [10] J. Hoste, J. H. Przytycki, Tangle surgeries which preserve Jones-type polynomials, Center for Pure and Applied Mathematics preprint - PAM 617, U. C. Berkeley, 1994. Zbl0890.57004
  11. [11] G. T. Jin, D. Rolfsen, Some remarks on rotors in link theory, Canad. Math. Bull. 34 (1991), 480-484. Zbl0754.57002
  12. [12] V. Jones, Hecke algebra representations of braid groups and link polynomials, Ann. of Math. 126 (1987), 335-388. Zbl0631.57005
  13. [13] V. F. R. Jones, On knot invariants related to some statistical mechanical models, Pacific J. Math. 137 (1989), 311-334. Zbl0695.46029
  14. [14] V. F. R. Jones, Talk given at 25th Annual Spring Topology Conference, CSU Sacramento, April 11, 1991. 
  15. [15] V. F. R. Jones, Commuting transfer matrices and link polynomials, Internat. J. Math. 3 (1992), 205-212. Zbl0774.57005
  16. [16] V. F. R. Jones, Coincident link polynomials from commuting transfer matrices, Proceedings of the XXth International Conference on Differential Geometric Methods in Theoretical Physics, Vol. 1, 2 (New York, 1991), 137-151, World Sci. Publishing, River Edge, NJ, 1992. Zbl0813.57004
  17. [17] T. Kanenobu, Infinitely many knots with the same polynomial invariant, Proc. Amer. Math. Soc. 97 (1986), 158-162. Zbl0611.57007
  18. [18] T. Kanenobu, The Homfly and the Kauffman bracket polynomials for the generalized mutant of a link, Topology Appl., to appear. Zbl0827.57006
  19. [19] J. Kania-Bartoszyńska, Examples of different 3-manifolds with the same invariants of Witten and Reshetikhin-Turaev, Topology 32 (1993), 47-54. Zbl0794.57002
  20. [20] L. H. Kauffman, State models and the Jones polynomial, Topology 26 (1987), 395-407. Zbl0622.57004
  21. [21] L-bull W. B. R. Lickorish, Polynomials for links, Bull. London Math. Soc. 20 (1988), 558-588. Zbl0685.57001
  22. [22] Li-1 W. B. R. Lickorish, Distinct 3-manifolds with all S U ( 2 ) q invariants the same, Proc. Amer. Math. Soc. 117 (1993), 285-292. Zbl0770.57003
  23. [23] W. B. R. Lickorish, A. S. Lipson, Polynomials of 2-cable-like links, Proc. Amer. Math. Soc. 100 (1987), 355-361. Zbl0617.57004
  24. [24] W. B. R. Lickorish, K. Millett, A polynomial invariant of oriented links, Topology 26 (1987), 107-141. Zbl0608.57009
  25. [25] J. M. Montesinos, Surgery on links and double branched covers of S 3 , in: Knots, groups and 3-manifolds, ed. L. P. Neuwirth, Ann. Math. Studies, 84, 227-259, Princeton Univ. Press, 1975. 
  26. [26] M-T-1 H. R. Morton, P. Traczyk, The Jones polynomial of satellite links around mutants, in: Braids, Ed. J. S. Birman, A. Libgober, AMS Contemporary Math., 78 (1988), 587-592. Zbl0666.57010
  27. [27] H. R. Morton, P. Traczyk, Knots and algebras, Contribuciones Matematicas en homenaje al profesor D. Antonio Plans Sanz de Bremond, ed. E. Martin-Peinador and A. Rodez Usan, University of Zaragoza, (1990), 201-220. 
  28. [28] Mura J. Murakami, The parallel version of polynomial invariants of links, Osaka J. Math. 26 (1989), 1-55. Zbl0704.57003
  29. [29] J. H. Przytycki, Equivalence of cables of mutants of knots, Canad. J. Math. XLI (1989), 250-273. Zbl0667.57003
  30. [30] J. H. Przytycki, Skein modules of 3-manifolds, Bull. Polish Acad. Sci. Math. 39 (1991), 91-100. Zbl0762.57013
  31. [31] J. H. Przytycki, Manuscript of the lecture delivered at the University of Tennessee, October 18, 1991. 
  32. [32] J. H. Przytycki, Applications of the spectral parameter tangle of V. Jones, Abstracts Amer. Math. Soc. 12 (1991), 496-497. 
  33. [33] J. H. Przytycki, The spectral parameter 3-string tangle, in preparation. 
  34. [34] J. H. Przytycki, P. Traczyk, Invariants of links of Conway type, Kobe J. Math. 4 (1987), 115-139. Zbl0655.57002
  35. [35] N. Y. Reshetikhin, V. Turaev, Invariants of three manifolds via link polynomials and quantum groups. Invent. Math. 103 (1991), 547-597. Zbl0725.57007
  36. [36] D. Rolfsen, The quest for a knot with trivial Jones polynomial; diagram surgery and the Temperley-Lieb algebra, in: Topics in knot theory, Ed. M. E. Bozhüyük, NATO ASI Series, Series C: Mathematical and Physical Sciences - Vol. 399, Kluwer Academic Publishers 1993, 195-210. Zbl0833.57002
  37. [37] D. Rolfsen, Global mutation of knots, J. Knot Theory Ramifications 3 (1994), 407-417. Zbl0874.57003
  38. [38] H. N. V. Temperley, E. H. Lieb, Relations between the 'percolation' and 'coloring' problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the 'percolation' problem, Proc. Roy. Soc. London Ser. A 322 (1971), 251-280. Zbl0211.56703
  39. [39] P. Traczyk, A note on rotant links, preprint, 1989. Zbl0942.57007
  40. [40] V. Turaev, The Yang-Baxter equation and invariants of links, Invent. Math. 92 (1988), 527-553. Zbl0648.57003
  41. [41] V. G. Turaev, The Conway and Kauffman modules of the solid torus, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 167 (1988), 79-89. %English translation: J. Soviet Math. Zbl0673.57004
  42. [42] V. G. Turaev, H. Wenzl, Quantum invariants of 3-manifolds associated with classical simple Lie algebras, Internat. J. Math. 4 (1993), 323-358. Zbl0784.57007
  43. [43] W. T. Tutte, Codichromatic graphs, J. Combin. Theory Ser. B 16 (1974), 168-174. Zbl0275.05108
  44. [44] O. Ya. Viro, Nonprojecting isotopies and knots with homeomorphic coverings, J. Soviet Math. 12 (1979), 86-96. Zbl0406.57021
  45. [45] F. Waldhausen, Über Involutionen der 3 Sphäre, Topology 8 (1969), 81-91. Zbl0185.27603
  46. [4] S. Yamada, An operator on regular isotopy invariants of link diagrams, Topology 28 (1989), 369-377. Zbl0685.57002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.