Rotation numbers for Lagrangian systems and Morse theory
Vieri Benci; Alberto Abbondandolo
Banach Center Publications (1996)
- Volume: 35, Issue: 1, page 29-38
- ISSN: 0137-6934
Access Full Article
topHow to cite
topBenci, Vieri, and Abbondandolo, Alberto. "Rotation numbers for Lagrangian systems and Morse theory." Banach Center Publications 35.1 (1996): 29-38. <http://eudml.org/doc/251332>.
@article{Benci1996,
author = {Benci, Vieri, Abbondandolo, Alberto},
journal = {Banach Center Publications},
keywords = {rotation numbers; periodic solutions; Lagrangian systems},
language = {eng},
number = {1},
pages = {29-38},
title = {Rotation numbers for Lagrangian systems and Morse theory},
url = {http://eudml.org/doc/251332},
volume = {35},
year = {1996},
}
TY - JOUR
AU - Benci, Vieri
AU - Abbondandolo, Alberto
TI - Rotation numbers for Lagrangian systems and Morse theory
JO - Banach Center Publications
PY - 1996
VL - 35
IS - 1
SP - 29
EP - 38
LA - eng
KW - rotation numbers; periodic solutions; Lagrangian systems
UR - http://eudml.org/doc/251332
ER -
References
top- [1] A. Abbondandolo, A rotation number for invariant measures and Morse theory, (to appear).
- [2] D. V. Anosov, Geodesic flows on closed Riemannian manifolds with negative curvature, Proc. Inst. Steklov 90 (1967), 1-235. Zbl0176.19101
- [3] V. I. Arnol'd, Characteristic class entering in quantization conditions,Functional Anal. Appl. 1 (1967), 1-14.
- [4] V. Benci, A new approach to Morse-Conley Theory and some applications, Ann. Mat. Pura Appl. (4) 158 (1991), 231-305. Zbl0778.58011
- [5] V. Benci and D. Fortunato, Periodic solutions of asymptotically linear dinamical systems, Nonlinear Diff. Eq. and Appl. (to appear). Zbl0821.34037
- [6] R. Bott, On the iteration of closed geodesics and the Sturm intersection theory, Comm. Pure Appl. Math. 9(1956), 176-206. Zbl0074.17202
- [7] K. C. Chang, Infinite dimensional Morse theory and multiple solutions problems, Boston-Basel: Birkhauser 1993.
- [8] C. Conley and E. Zehnder, Morse-type index theory for flows and periodic solutions for Hamiltonian equations, Comm. Pure Appl. Math. 37 (1984), 207-253. Zbl0559.58019
- [9] I. Ekeland, Convexity methods in Hamiltonian mechanics, Berlin Heidelberg New York: Springer-Verlag 1990. Zbl0707.70003
- [10] I. Ekeland, An index theory for periodic solutions of convex Hamiltonian systems, Proceedings for Symposia in Pure Math. 45, 395-423.
- [11] R. Mañé, Ergodic Theory and Differentiable Dynamics, Berlin Heidelberg New York: Springer-Verlag 1987. Zbl0616.28007
- [12] J. L. Mawhin and M. Willem, Critical point theory and Hamiltonian systems, New York: Springer-Verlag 1989. Zbl0676.58017
- [13] M. Vigué-Poirrier and D. Sullivan, The homology theory for the closed geodesic problem, J. Differential Geom. 11(1976), 633-644. Zbl0361.53058
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.