# Isometric imbeddings of Euclidean spaces into finite dimensional ${l}_{p}$-spaces

Banach Center Publications (1995)

- Volume: 34, Issue: 1, page 79-87
- ISSN: 0137-6934

## Access Full Article

top## Abstract

top## How to cite

topKönig, Hermann. "Isometric imbeddings of Euclidean spaces into finite dimensional $l_p$-spaces." Banach Center Publications 34.1 (1995): 79-87. <http://eudml.org/doc/251336>.

@article{König1995,

abstract = {It is shown that $l^n_2$ imbeds isometrically into $l^\{n^2+1\}_4$ provided that n is a prime power plus one, in the complex case. This and similar imbeddings are constructed using elementary techniques from number theory, combinatorics and coding theory. The imbeddings are related to existence of certain cubature formulas in numerical analysis.},

author = {König, Hermann},

journal = {Banach Center Publications},

keywords = {number theory; combinatorics; coding theory; imbeddings; cubature formulas in numerical analysis},

language = {eng},

number = {1},

pages = {79-87},

title = {Isometric imbeddings of Euclidean spaces into finite dimensional $l_p$-spaces},

url = {http://eudml.org/doc/251336},

volume = {34},

year = {1995},

}

TY - JOUR

AU - König, Hermann

TI - Isometric imbeddings of Euclidean spaces into finite dimensional $l_p$-spaces

JO - Banach Center Publications

PY - 1995

VL - 34

IS - 1

SP - 79

EP - 87

AB - It is shown that $l^n_2$ imbeds isometrically into $l^{n^2+1}_4$ provided that n is a prime power plus one, in the complex case. This and similar imbeddings are constructed using elementary techniques from number theory, combinatorics and coding theory. The imbeddings are related to existence of certain cubature formulas in numerical analysis.

LA - eng

KW - number theory; combinatorics; coding theory; imbeddings; cubature formulas in numerical analysis

UR - http://eudml.org/doc/251336

ER -

## References

top- [B] E. Bannai, On extremal finite sets in the sphere and other metric spaces, London Math. Soc. Lecture Notes Ser. 131 (1986), 13-38.
- [DGS] P. Delsarte, J. M. Goethals, J. J. Seidel, Spherical codes and designs, Geom. Dedicata 6 (1977), 363-388. Zbl0376.05015
- [FLM] T. Figiel, J. Lindenstrauss, V. Milman, The dimension of almost spherical sections of convex bodies, Acta Math. 139 (1977), 53-94. Zbl0375.52002
- [GS] J. M. Goethals, J. J. Seidel, Cubature formulae, polytopes and spherical designs, in: The geometric vein, Coxeter Festschrift, ed. C. Davis et al. Springer 1981, 203-218.
- [Ho] S. G. Hoggar, t-designs in projective spaces, European J. Combin. 3 (1982), 233-254.
- [HR] H. Halberstam, K. Roth, Sequences, Springer 1983.
- [Hu] Hua Loo Keng, Introduction to number theory, Springer 1982.
- [KT] H. König, N. Tomczak-Jaegermann, Norms of minimal projections, J. Funct. Anal. 119 (1994), 253-280.
- [L] Yu. Lyubich, On the boundary spectrum of a contraction in Minkovsky spaces, Siberian Math. J. 11 (1970), 271-279.
- [LV] Yu. Lyubich, L. Vaserstein, Isometric imbeddings between classical Banach spaces, cubature formulas, and spherical designs, Geom. Dedicata 47 (1993), 327-362. Zbl0785.52002
- [M] V. Milman, A few observations on the connections between local theory and some other fields, in: Geometric aspects of functional analysis, Lecture Notes in Math. 1317 (1988), 283-289.
- [MS] F. Mac Williams, N. Sloane, The theory of error-correcting codes II, North Holland 1977.
- [R] B. Reznick, Sums of even powers of real linear forms, Mem. Amer. Math. Soc. 96 (1992), no. 463. Zbl0762.11019
- [S] J. J. Seidel, Isometric embeddings and geometric designs, preprint Eindhoven 1993, to appear in Trends in Discrete Mathematics.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.