Viability and invariance for differential games with applications to Hamilton-Jacobi-Isaacs equations

Pierre Cardaliaguet; Sławomir Plaskacz

Banach Center Publications (1996)

  • Volume: 35, Issue: 1, page 149-158
  • ISSN: 0137-6934

How to cite

top

Cardaliaguet, Pierre, and Plaskacz, Sławomir. "Viability and invariance for differential games with applications to Hamilton-Jacobi-Isaacs equations." Banach Center Publications 35.1 (1996): 149-158. <http://eudml.org/doc/251344>.

@article{Cardaliaguet1996,
author = {Cardaliaguet, Pierre, Plaskacz, Sławomir},
journal = {Banach Center Publications},
keywords = {viscosity solutions; Hamilton-Jacobi equations; Isaacs equation},
language = {eng},
number = {1},
pages = {149-158},
title = {Viability and invariance for differential games with applications to Hamilton-Jacobi-Isaacs equations},
url = {http://eudml.org/doc/251344},
volume = {35},
year = {1996},
}

TY - JOUR
AU - Cardaliaguet, Pierre
AU - Plaskacz, Sławomir
TI - Viability and invariance for differential games with applications to Hamilton-Jacobi-Isaacs equations
JO - Banach Center Publications
PY - 1996
VL - 35
IS - 1
SP - 149
EP - 158
LA - eng
KW - viscosity solutions; Hamilton-Jacobi equations; Isaacs equation
UR - http://eudml.org/doc/251344
ER -

References

top
  1. [1] J.-P. Aubin, Viability Theory, Birkhäuser, Boston, Basel, Berlin (1991). 
  2. [2] J.-P. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag (1984). Zbl0538.34007
  3. [3] J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser, Boston, Basel, Berlin (1990). 
  4. [4] P. Cardaliaguet, Domaines discriminant en jeux différentiels, Ph.D. Thesis, Université Paris Dauphine (1992). 
  5. [5] M. G. Crandall, L. C. Evans and P. L. Lions, Some properties of viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 282, 487-502. Zbl0543.35011
  6. [6] M. G. Crandall and P. L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 277 (1983), 1-42. 
  7. [7] R. J. Elliott and N. J. Kalton, The existence of value in differential games, Mem. Amer. Math. Soc. 126 (1972). Zbl0244.90046
  8. [8] L. C. Evans and P. E. Souganidis, Differential games and representation formulas for solutions of Hamilton-Jacobi-Isaacs equations, Indiana Univ. Math. J. 33 (1984), 773-797. Zbl1169.91317
  9. [9] H. Frankowska, Lower semicontinuous solutions of Hamilton-Jacobi-Bellman equations, SIAM J. Control And Optimization 31 (1993), 257-272. Zbl0796.49024
  10. [10] H. Frankowska and S. Plaskacz, A measurable - upper semicontinuous viability theorem for tubes, Nonlinear Analysis TMA. (to appear). Zbl0838.34017
  11. [11] H. Frankowska, S. Plaskacz and T. Rzeżuchowski, Théorèmes de viabilité mesurables et l'équation d'Hamilton-Jacobi-Bellman, Comptes-Rendus de l'Académie des Sciences, Paris, Série 1 (1992). 
  12. [12] H. Frankowska, S. Plaskacz and T. Rzeżuchowski, Measurable viability theorems and Hamilton-Jacobi-Bellman equation, J. Diff. Eqs. 116 (1995), 265-305. Zbl0836.34016
  13. [13] R. T. Rockafellar, Proximal subgradients, marginal values, and augmented Lagrangians in nonconvex optimization, Math. of Oper. Res. 6 (1981), 424-436. Zbl0492.90073
  14. [14] E. Roxin, The axiomatic approach in differential games, J. Optim. Theory Appl. 3 (1969), 153-163. Zbl0175.10504
  15. [15] P. P. Varaiya, The existence of solutions to a diffrential game, SIAM J. Control Optim. 5 (1967), 153-162. Zbl0154.09901

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.