Page 1 Next

Displaying 1 – 20 of 69

Showing per page

Boundary-influenced robust controls: two network examples

Martin V. Day (2006)

ESAIM: Control, Optimisation and Calculus of Variations

We consider the differential game associated with robust control of a system in a compact state domain, using Skorokhod dynamics on the boundary. A specific class of problems motivated by queueing network control is considered. A constructive approach to the Hamilton-Jacobi-Isaacs equation is developed which is based on an appropriate family of extremals, including boundary extremals for which the Skorokhod dynamics are active. A number of technical lemmas and a structured verification theorem...

Convergence method, properties and computational complexity for Lyapunov games

Julio B. Clempner, Alexander S. Poznyak (2011)

International Journal of Applied Mathematics and Computer Science

We introduce the concept of a Lyapunov game as a subclass of strictly dominated games and potential games. The advantage of this approach is that every ergodic system (repeated game) can be represented by a Lyapunov-like function. A direct acyclic graph is associated with a game. The graph structure represents the dependencies existing between the strategy profiles. By definition, a Lyapunov-like function monotonically decreases and converges to a single Lyapunov equilibrium point identified by...

Feedback Nash equilibria in optimal taxation problems

Mikhail Krastanov, Rossen Rozenov (2009)

Open Mathematics

A well-known result in public economics is that capital income should not be taxed in the long run. This result has been derived using necessary optimality conditions for an appropriate dynamic Stackelberg game. In this paper we consider three models of dynamic taxation in continuous time and suggest a method for calculating their feedback Nash equilibria based on a sufficient condition for optimality. We show that the optimal tax on capital income is generally different from zero.

Hamilton–Jacobi equations and two-person zero-sum differential games with unbounded controls

Hong Qiu, Jiongmin Yong (2013)

ESAIM: Control, Optimisation and Calculus of Variations

A two-person zero-sum differential game with unbounded controls is considered. Under proper coercivity conditions, the upper and lower value functions are characterized as the unique viscosity solutions to the corresponding upper and lower Hamilton–Jacobi–Isaacs equations, respectively. Consequently, when the Isaacs’ condition is satisfied, the upper and lower value functions coincide, leading to the existence of the value function of the differential game. Due to the unboundedness of the controls,...

Currently displaying 1 – 20 of 69

Page 1 Next