On property (B) of higher order delay differential equations
Blanka Baculíková; Jozef Džurina
Archivum Mathematicum (2012)
- Volume: 048, Issue: 4, page 301-309
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topBaculíková, Blanka, and Džurina, Jozef. "On property (B) of higher order delay differential equations." Archivum Mathematicum 048.4 (2012): 301-309. <http://eudml.org/doc/251365>.
@article{Baculíková2012,
abstract = {In this paper we offer criteria for property (B) and additional asymptotic behavior of solutions of the $n$-th order delay differential equations
\begin\{equation*\} \big (r(t)\big [x^\{(n-1)\}(t)\big ]^\{\gamma \}\big )^\{\prime \}=q(t)f\big (x(\tau (t))\big )\,. \end\{equation*\}
Obtained results essentially use new comparison theorems, that permit to reduce the problem of the oscillation of the n-th order equation to the the oscillation of a set of certain the first order equations. So that established comparison principles essentially simplify the examination of studied equations. Both cases $\int ^\{\infty \} r^\{-1/\gamma \}(t)\,\{t\}=\infty $ and $\int ^\{\infty \} r^\{-1/\gamma \}(t)\,\{t\}<\infty $ are discussed.},
author = {Baculíková, Blanka, Džurina, Jozef},
journal = {Archivum Mathematicum},
keywords = {$n$-th order differential equations; comparison theorem; oscillation; property (B); -th order differential equation; comparison theorem; oscillation; property (B)},
language = {eng},
number = {4},
pages = {301-309},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On property (B) of higher order delay differential equations},
url = {http://eudml.org/doc/251365},
volume = {048},
year = {2012},
}
TY - JOUR
AU - Baculíková, Blanka
AU - Džurina, Jozef
TI - On property (B) of higher order delay differential equations
JO - Archivum Mathematicum
PY - 2012
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 048
IS - 4
SP - 301
EP - 309
AB - In this paper we offer criteria for property (B) and additional asymptotic behavior of solutions of the $n$-th order delay differential equations
\begin{equation*} \big (r(t)\big [x^{(n-1)}(t)\big ]^{\gamma }\big )^{\prime }=q(t)f\big (x(\tau (t))\big )\,. \end{equation*}
Obtained results essentially use new comparison theorems, that permit to reduce the problem of the oscillation of the n-th order equation to the the oscillation of a set of certain the first order equations. So that established comparison principles essentially simplify the examination of studied equations. Both cases $\int ^{\infty } r^{-1/\gamma }(t)\,{t}=\infty $ and $\int ^{\infty } r^{-1/\gamma }(t)\,{t}<\infty $ are discussed.
LA - eng
KW - $n$-th order differential equations; comparison theorem; oscillation; property (B); -th order differential equation; comparison theorem; oscillation; property (B)
UR - http://eudml.org/doc/251365
ER -
References
top- Agarwal, R. P., Grace, S. R., O’Regan, D., Oscillation Theory for Difference and Functional Differential Equations, Marcel Dekker, Kluwer Academic, Dordrecht, 2000. (2000) MR1774732
- Agarwal, R. P., Grace, S. R., O’Regan, D., 10.1006/jmaa.2001.7571, J. Math. Anal. Appl. 262 (2001), 601–622. (2001) Zbl0997.34060MR1859327DOI10.1006/jmaa.2001.7571
- Agarwal, R. P., Grace, S. R., O’Regan, D., 10.1016/S0895-7177(03)00079-7, Math. Comput. Modelling 37 (2003), 705–728. (2003) Zbl1070.34083MR1981237DOI10.1016/S0895-7177(03)00079-7
- Baculíková, B., Džurina, J., 10.1016/j.mcm.2010.02.011, Math. Comput. Modelling 52 (2010), 215–226. (2010) Zbl1201.34097MR2645933DOI10.1016/j.mcm.2010.02.011
- Baculíková, B., Džurina, J., Graef, J. R., On the oscillation of higher order delay differential equations, Nonlinear Oscillations 15 (2012), 13–24. (2012) Zbl1267.34121MR2986592
- Bainov, D. D., Mishev, D. P., Oscillation Theory for Nonlinear Differential Equations with Delay, Adam Hilger, Bristol, Philadelphia, New York, 1991. (1991)
- Džurina, J., Comparison theorems for nonlinear ODE’s, Math. Slovaca 42 (1992), 299–315. (1992) Zbl0760.34030MR1182960
- Erbe, L. H., Kong, Q., Zhang, B.G., Oscillation Theory for Functional Differential Equations, Marcel Dekker, New York, 1994. (1994) Zbl0821.34067MR1309905
- Grace, S. R., Agarwal, R. P., Pavani, R., Thandapani, E., 10.1016/j.amc.2008.01.025, Appl. Math. Comput. 202 (2008), 102–112. (2008) Zbl1154.34368MR2437140DOI10.1016/j.amc.2008.01.025
- Grace, S. R., Lalli, B. S., 10.1016/0022-247X(90)90371-L, J. Math. Anal. Appl. 147 (1990), 569–579. (1990) Zbl0711.34085MR1050228DOI10.1016/0022-247X(90)90371-L
- Kiguradze, I. T., Chaturia, T. A., Asymptotic Properties of Solutions of Nonatunomous Ordinary Differential Equations, Kluwer Acad. Publ., Dordrecht, 1993. (1993) MR1220223
- Kusano, T., Naito, M., 10.2969/jmsj/03330509, J. Math. Soc. Japan 3 (1981), 509–533. (1981) Zbl0494.34049MR0620288DOI10.2969/jmsj/03330509
- Ladde, G. S., Lakshmikantham, V., Zhang, B. G., Oscillation Theory of Differential Equations with Deviating Arguments, Marcel Dekker, New York, 1987. (1987) Zbl0832.34071MR1017244
- Li, T., Thandapani, E., Oscillation of solutions to odd–order nonlinear neutral functional differential equations, EJQTDE 2011 (2011), 1–12. (2011) Zbl1211.34080MR2781058
- Li, T., Zhang, Ch., Baculíková, B., Džurina, J., On the oscillation of third order quasi–linear delay differential equations, Tatra Mt. Math. Publ. 48 (2011), 1–7. (2011) Zbl1265.34235
- Mahfoud, W. E., 10.1016/0022-0396(77)90171-1, J. Differential Equations 24 (1977), 75–98. (1977) Zbl0341.34065MR0457902DOI10.1016/0022-0396(77)90171-1
- Philos, Ch. G., On the existence of nonoscillatory solutions tending to zero at infinity for differential equations with positive delay, Arch. Math. (Brno) 36 (1981), 168–178. (1981) MR0619435
- Philos, Ch. G., Oscillation and asymptotic behavior of linear retarded differential equations of arbitrary order, Tech. Report 57, Univ. Ioannina, 1981. (1981)
- Philos, Ch. G., 10.1017/S1446788700024630, J. Austral. Math. Soc. 36 (1984), 176–186. (1984) Zbl0541.34046MR0725744DOI10.1017/S1446788700024630
- Shreve, W. E., 10.1090/S0002-9939-1973-0372371-X, Proc. Amer. Math. Soc. 41 (1973), 565–568. (1973) Zbl0254.34075MR0372371DOI10.1090/S0002-9939-1973-0372371-X
- Tang, S., Li, T., Thandapani, E., Oscillation of higher–order half–linear neutral differential equations, Demonstratio Math. (to appear).
- Zhang, Ch., Li, T., Sun, B., Thandapani, E., 10.1016/j.aml.2011.04.015, Appl. Math. Lett. 24 (2011), 1618–1621. (2011) Zbl1223.34095MR2803721DOI10.1016/j.aml.2011.04.015
- Zhang, Q., Yan, J., Gao, L., 10.1016/j.camwa.2009.06.027, Comput. Math. Appl. 59 (2010), 426–430. (2010) Zbl1189.34135MR2575529DOI10.1016/j.camwa.2009.06.027
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.