On property (B) of higher order delay differential equations

Blanka Baculíková; Jozef Džurina

Archivum Mathematicum (2012)

  • Volume: 048, Issue: 4, page 301-309
  • ISSN: 0044-8753

Abstract

top
In this paper we offer criteria for property (B) and additional asymptotic behavior of solutions of the n -th order delay differential equations ( r ( t ) [ x ( n - 1 ) ( t ) ] γ ) ' = q ( t ) f ( x ( τ ( t ) ) ) . Obtained results essentially use new comparison theorems, that permit to reduce the problem of the oscillation of the n-th order equation to the the oscillation of a set of certain the first order equations. So that established comparison principles essentially simplify the examination of studied equations. Both cases r - 1 / γ ( t ) t = and r - 1 / γ ( t ) t < are discussed.

How to cite

top

Baculíková, Blanka, and Džurina, Jozef. "On property (B) of higher order delay differential equations." Archivum Mathematicum 048.4 (2012): 301-309. <http://eudml.org/doc/251365>.

@article{Baculíková2012,
abstract = {In this paper we offer criteria for property (B) and additional asymptotic behavior of solutions of the $n$-th order delay differential equations \begin\{equation*\} \big (r(t)\big [x^\{(n-1)\}(t)\big ]^\{\gamma \}\big )^\{\prime \}=q(t)f\big (x(\tau (t))\big )\,. \end\{equation*\} Obtained results essentially use new comparison theorems, that permit to reduce the problem of the oscillation of the n-th order equation to the the oscillation of a set of certain the first order equations. So that established comparison principles essentially simplify the examination of studied equations. Both cases $\int ^\{\infty \} r^\{-1/\gamma \}(t)\,\{t\}=\infty $ and $\int ^\{\infty \} r^\{-1/\gamma \}(t)\,\{t\}<\infty $ are discussed.},
author = {Baculíková, Blanka, Džurina, Jozef},
journal = {Archivum Mathematicum},
keywords = {$n$-th order differential equations; comparison theorem; oscillation; property (B); -th order differential equation; comparison theorem; oscillation; property (B)},
language = {eng},
number = {4},
pages = {301-309},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On property (B) of higher order delay differential equations},
url = {http://eudml.org/doc/251365},
volume = {048},
year = {2012},
}

TY - JOUR
AU - Baculíková, Blanka
AU - Džurina, Jozef
TI - On property (B) of higher order delay differential equations
JO - Archivum Mathematicum
PY - 2012
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 048
IS - 4
SP - 301
EP - 309
AB - In this paper we offer criteria for property (B) and additional asymptotic behavior of solutions of the $n$-th order delay differential equations \begin{equation*} \big (r(t)\big [x^{(n-1)}(t)\big ]^{\gamma }\big )^{\prime }=q(t)f\big (x(\tau (t))\big )\,. \end{equation*} Obtained results essentially use new comparison theorems, that permit to reduce the problem of the oscillation of the n-th order equation to the the oscillation of a set of certain the first order equations. So that established comparison principles essentially simplify the examination of studied equations. Both cases $\int ^{\infty } r^{-1/\gamma }(t)\,{t}=\infty $ and $\int ^{\infty } r^{-1/\gamma }(t)\,{t}<\infty $ are discussed.
LA - eng
KW - $n$-th order differential equations; comparison theorem; oscillation; property (B); -th order differential equation; comparison theorem; oscillation; property (B)
UR - http://eudml.org/doc/251365
ER -

References

top
  1. Agarwal, R. P., Grace, S. R., O’Regan, D., Oscillation Theory for Difference and Functional Differential Equations, Marcel Dekker, Kluwer Academic, Dordrecht, 2000. (2000) MR1774732
  2. Agarwal, R. P., Grace, S. R., O’Regan, D., 10.1006/jmaa.2001.7571, J. Math. Anal. Appl. 262 (2001), 601–622. (2001) Zbl0997.34060MR1859327DOI10.1006/jmaa.2001.7571
  3. Agarwal, R. P., Grace, S. R., O’Regan, D., 10.1016/S0895-7177(03)00079-7, Math. Comput. Modelling 37 (2003), 705–728. (2003) Zbl1070.34083MR1981237DOI10.1016/S0895-7177(03)00079-7
  4. Baculíková, B., Džurina, J., 10.1016/j.mcm.2010.02.011, Math. Comput. Modelling 52 (2010), 215–226. (2010) Zbl1201.34097MR2645933DOI10.1016/j.mcm.2010.02.011
  5. Baculíková, B., Džurina, J., Graef, J. R., On the oscillation of higher order delay differential equations, Nonlinear Oscillations 15 (2012), 13–24. (2012) Zbl1267.34121MR2986592
  6. Bainov, D. D., Mishev, D. P., Oscillation Theory for Nonlinear Differential Equations with Delay, Adam Hilger, Bristol, Philadelphia, New York, 1991. (1991) 
  7. Džurina, J., Comparison theorems for nonlinear ODE’s, Math. Slovaca 42 (1992), 299–315. (1992) Zbl0760.34030MR1182960
  8. Erbe, L. H., Kong, Q., Zhang, B.G., Oscillation Theory for Functional Differential Equations, Marcel Dekker, New York, 1994. (1994) Zbl0821.34067MR1309905
  9. Grace, S. R., Agarwal, R. P., Pavani, R., Thandapani, E., 10.1016/j.amc.2008.01.025, Appl. Math. Comput. 202 (2008), 102–112. (2008) Zbl1154.34368MR2437140DOI10.1016/j.amc.2008.01.025
  10. Grace, S. R., Lalli, B. S., 10.1016/0022-247X(90)90371-L, J. Math. Anal. Appl. 147 (1990), 569–579. (1990) Zbl0711.34085MR1050228DOI10.1016/0022-247X(90)90371-L
  11. Kiguradze, I. T., Chaturia, T. A., Asymptotic Properties of Solutions of Nonatunomous Ordinary Differential Equations, Kluwer Acad. Publ., Dordrecht, 1993. (1993) MR1220223
  12. Kusano, T., Naito, M., 10.2969/jmsj/03330509, J. Math. Soc. Japan 3 (1981), 509–533. (1981) Zbl0494.34049MR0620288DOI10.2969/jmsj/03330509
  13. Ladde, G. S., Lakshmikantham, V., Zhang, B. G., Oscillation Theory of Differential Equations with Deviating Arguments, Marcel Dekker, New York, 1987. (1987) Zbl0832.34071MR1017244
  14. Li, T., Thandapani, E., Oscillation of solutions to odd–order nonlinear neutral functional differential equations, EJQTDE 2011 (2011), 1–12. (2011) Zbl1211.34080MR2781058
  15. Li, T., Zhang, Ch., Baculíková, B., Džurina, J., On the oscillation of third order quasi–linear delay differential equations, Tatra Mt. Math. Publ. 48 (2011), 1–7. (2011) Zbl1265.34235
  16. Mahfoud, W. E., 10.1016/0022-0396(77)90171-1, J. Differential Equations 24 (1977), 75–98. (1977) Zbl0341.34065MR0457902DOI10.1016/0022-0396(77)90171-1
  17. Philos, Ch. G., On the existence of nonoscillatory solutions tending to zero at infinity for differential equations with positive delay, Arch. Math. (Brno) 36 (1981), 168–178. (1981) MR0619435
  18. Philos, Ch. G., Oscillation and asymptotic behavior of linear retarded differential equations of arbitrary order, Tech. Report 57, Univ. Ioannina, 1981. (1981) 
  19. Philos, Ch. G., 10.1017/S1446788700024630, J. Austral. Math. Soc. 36 (1984), 176–186. (1984) Zbl0541.34046MR0725744DOI10.1017/S1446788700024630
  20. Shreve, W. E., 10.1090/S0002-9939-1973-0372371-X, Proc. Amer. Math. Soc. 41 (1973), 565–568. (1973) Zbl0254.34075MR0372371DOI10.1090/S0002-9939-1973-0372371-X
  21. Tang, S., Li, T., Thandapani, E., Oscillation of higher–order half–linear neutral differential equations, Demonstratio Math. (to appear). 
  22. Zhang, Ch., Li, T., Sun, B., Thandapani, E., 10.1016/j.aml.2011.04.015, Appl. Math. Lett. 24 (2011), 1618–1621. (2011) Zbl1223.34095MR2803721DOI10.1016/j.aml.2011.04.015
  23. Zhang, Q., Yan, J., Gao, L., 10.1016/j.camwa.2009.06.027, Comput. Math. Appl. 59 (2010), 426–430. (2010) Zbl1189.34135MR2575529DOI10.1016/j.camwa.2009.06.027

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.