Solutions to a class of polynomially generalized Bers–Vekua equations using Clifford analysis

Min Ku; Uwe Kähler; Paula Cerejeiras

Archivum Mathematicum (2012)

  • Volume: 048, Issue: 5, page 371-385
  • ISSN: 0044-8753

Abstract

top
In this paper a class of polynomially generalized Vekua–type equations and of polynomially generalized Bers–Vekua equations with variable coefficients defined in a domain of Euclidean space are discussed. Using the methods of Clifford analysis, first the Fischer–type decomposition theorems for null solutions to these equations are obtained. Then we give, under some conditions, the solutions to the polynomially generalized Bers–Vekua equation with variable coefficients. Finally, we present the structure of the solutions to the inhomogeneous polynomially generalized Bers–Vekua equation.

How to cite

top

Ku, Min, Kähler, Uwe, and Cerejeiras, Paula. "Solutions to a class of polynomially generalized Bers–Vekua equations using Clifford analysis." Archivum Mathematicum 048.5 (2012): 371-385. <http://eudml.org/doc/251370>.

@article{Ku2012,
abstract = {In this paper a class of polynomially generalized Vekua–type equations and of polynomially generalized Bers–Vekua equations with variable coefficients defined in a domain of Euclidean space are discussed. Using the methods of Clifford analysis, first the Fischer–type decomposition theorems for null solutions to these equations are obtained. Then we give, under some conditions, the solutions to the polynomially generalized Bers–Vekua equation with variable coefficients. Finally, we present the structure of the solutions to the inhomogeneous polynomially generalized Bers–Vekua equation.},
author = {Ku, Min, Kähler, Uwe, Cerejeiras, Paula},
journal = {Archivum Mathematicum},
keywords = {Clifford analysis; polynomially generalized Bers–Vekua operator; Dirac operator; Clifford analysis; polynomially generalized Bers-Vekua operator; Dirac operator},
language = {eng},
number = {5},
pages = {371-385},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Solutions to a class of polynomially generalized Bers–Vekua equations using Clifford analysis},
url = {http://eudml.org/doc/251370},
volume = {048},
year = {2012},
}

TY - JOUR
AU - Ku, Min
AU - Kähler, Uwe
AU - Cerejeiras, Paula
TI - Solutions to a class of polynomially generalized Bers–Vekua equations using Clifford analysis
JO - Archivum Mathematicum
PY - 2012
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 048
IS - 5
SP - 371
EP - 385
AB - In this paper a class of polynomially generalized Vekua–type equations and of polynomially generalized Bers–Vekua equations with variable coefficients defined in a domain of Euclidean space are discussed. Using the methods of Clifford analysis, first the Fischer–type decomposition theorems for null solutions to these equations are obtained. Then we give, under some conditions, the solutions to the polynomially generalized Bers–Vekua equation with variable coefficients. Finally, we present the structure of the solutions to the inhomogeneous polynomially generalized Bers–Vekua equation.
LA - eng
KW - Clifford analysis; polynomially generalized Bers–Vekua operator; Dirac operator; Clifford analysis; polynomially generalized Bers-Vekua operator; Dirac operator
UR - http://eudml.org/doc/251370
ER -

References

top
  1. Berglez, P., Representation of pseudoanalytic functions in the space, More progresses in analysis. Proceedings of the 5th international ISAAC congress, Catania, Italy, July 25–30, 2005 (Begehr, H., Nicolosi, F., eds.), 2008, pp. 1119–1126. (2008) MR1395232
  2. Berglez, P., On the solutions of a class of iterated generalized Bers–Vekua equations in Clifford analysis, Math. Methods Appl. Sci. 33 (2010), 454–458. (2010) Zbl1184.30038MR2641622
  3. Bers, L., Theory of Pseudo–analytic Functions, New York University, Institute for Mathematics and Mechanics, III, 187 p., 1953. (1953) Zbl0051.31603MR0057347
  4. Brackx, F., Delanghe, R., Sommen, F., Clifford analysis, Res. Notes Math., vol. 76, Pitman, London, 1982. (1982) Zbl0529.30001MR0697564
  5. Delanghe, R., Brackx, F., Hypercomplex function theory and Hilbert modules with reproducing kernel, Proc. London Math. Soc. 37 (3) (1978), 545–576. (1978) Zbl0392.46019MR0512025
  6. Delanghe, R., Sommen, F., Souček, V., Clifford algebra and spinor–valued functions, Math. Appl., vol. 53, Kluwer Acad. Publ., Dordrecht, 1992. (1992) Zbl0747.53001MR1169463
  7. Gürlebeck, K., Sprössig, W., Quaternionic Analysis and Elliptic Boundary Value Problems, Birkhäuser, Basel, 1990. (1990) Zbl0850.35001MR1096955
  8. Min, K., Daoshun, W., 10.1016/j.jmaa.2010.08.015, J. Math. Anal. Appl. 374 (2011), 442–457. (2011) Zbl1203.30056MR2729233DOI10.1016/j.jmaa.2010.08.015
  9. Min, K., Daoshun, W., Solutions to polynomial Dirac equations on unbounded domains in Clifford analysis, Math. Methods Appl. Sci. 34 (2011), 418–427. (2011) MR2791483
  10. Min, K., Daoshun, W., Lin, D., 10.1007/s11785-011-0131-8, Complex Anal. Oper. Theory 6 (2) (2012), 407–424. (2012) MR2899761DOI10.1007/s11785-011-0131-8
  11. Min, K., Jinyuan, D., 10.1007/s00006-008-0067-x, Adv. Appl. Clifford Algebras 19 (1) (2009), 83–100. (2009) MR2485699DOI10.1007/s00006-008-0067-x
  12. Min, K., Khäler, U., Riemann boundary value problems on the half space in Clifford analysis, Math. Methods Appl. Sci. (2012), doi:10.1002/mma.2557. (2012) MR3021423
  13. Min, K., Khäler, U., Daoshun, W., 10.1007/s00006-011-0308-2, Adv. Appl. Clifford Algebras 22 (2) (2012), 365–390. (2012) MR2930700DOI10.1007/s00006-011-0308-2
  14. Sprössig, W., 10.1007/BF03042210, Adv. Appl. Clifford Algebras 11 (2001), 77–92. (2001) Zbl1221.30118MR2106712DOI10.1007/BF03042210
  15. Vekua, I. N., Generalized Analytic Functions, Pergamon Press, London, 1962. (1962) Zbl0127.03505MR0150320
  16. Yafang, G., Tao, Q., Jinyuan, D., 10.1080/02781070310001634593, Complex Variables Theory Appl. 49 (1) (2004), 15–21. (2004) DOI10.1080/02781070310001634593

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.