Rarita-Schwinger type operators on spheres and real projective space

Junxia Li; John Ryan; Carmen J. Vanegas

Archivum Mathematicum (2012)

  • Volume: 048, Issue: 4, page 271-289
  • ISSN: 0044-8753

Abstract

top
In this paper we deal with Rarita-Schwinger type operators on spheres and real projective space. First we define the spherical Rarita-Schwinger type operators and construct their fundamental solutions. Then we establish that the projection operators appearing in the spherical Rarita-Schwinger type operators and the spherical Rarita-Schwinger type equations are conformally invariant under the Cayley transformation. Further, we obtain some basic integral formulas related to the spherical Rarita-Schwinger type operators. Second, we define the Rarita-Schwinger type operators on the real projective space and construct their kernels and Cauchy integral formulas.

How to cite

top

Li, Junxia, Ryan, John, and Vanegas, Carmen J.. "Rarita-Schwinger type operators on spheres and real projective space." Archivum Mathematicum 048.4 (2012): 271-289. <http://eudml.org/doc/251383>.

@article{Li2012,
abstract = {In this paper we deal with Rarita-Schwinger type operators on spheres and real projective space. First we define the spherical Rarita-Schwinger type operators and construct their fundamental solutions. Then we establish that the projection operators appearing in the spherical Rarita-Schwinger type operators and the spherical Rarita-Schwinger type equations are conformally invariant under the Cayley transformation. Further, we obtain some basic integral formulas related to the spherical Rarita-Schwinger type operators. Second, we define the Rarita-Schwinger type operators on the real projective space and construct their kernels and Cauchy integral formulas.},
author = {Li, Junxia, Ryan, John, Vanegas, Carmen J.},
journal = {Archivum Mathematicum},
keywords = {spherical Rarita-Schwinger type operators; Cayley transformation; real projective space; Almansi-Fischer decomposition; Iwasawa decomposition; spherical Rarita-Schwinger type operators; Cayley transformation; real projective space; Almansi-Fischer decomposition; Iwasawa decomposition},
language = {eng},
number = {4},
pages = {271-289},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Rarita-Schwinger type operators on spheres and real projective space},
url = {http://eudml.org/doc/251383},
volume = {048},
year = {2012},
}

TY - JOUR
AU - Li, Junxia
AU - Ryan, John
AU - Vanegas, Carmen J.
TI - Rarita-Schwinger type operators on spheres and real projective space
JO - Archivum Mathematicum
PY - 2012
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 048
IS - 4
SP - 271
EP - 289
AB - In this paper we deal with Rarita-Schwinger type operators on spheres and real projective space. First we define the spherical Rarita-Schwinger type operators and construct their fundamental solutions. Then we establish that the projection operators appearing in the spherical Rarita-Schwinger type operators and the spherical Rarita-Schwinger type equations are conformally invariant under the Cayley transformation. Further, we obtain some basic integral formulas related to the spherical Rarita-Schwinger type operators. Second, we define the Rarita-Schwinger type operators on the real projective space and construct their kernels and Cauchy integral formulas.
LA - eng
KW - spherical Rarita-Schwinger type operators; Cayley transformation; real projective space; Almansi-Fischer decomposition; Iwasawa decomposition; spherical Rarita-Schwinger type operators; Cayley transformation; real projective space; Almansi-Fischer decomposition; Iwasawa decomposition
UR - http://eudml.org/doc/251383
ER -

References

top
  1. Balinsky, A., Ryan, J., Some sharp L 2 inequalities for Dirac type operators, SIGMA, Symmetry Integrability Geom. Methods Appl. (2007), 10, paper 114, electronic only. (2007) Zbl1141.15026MR2366908
  2. Brackx, F., Delanghe, R., Sommen, F., Clifford Analysis, Pitman, London, 1982. (1982) Zbl0529.30001MR0697564
  3. Bureš, J., Sommen, F., Souček, V., Van Lancker, P., 10.1006/jfan.2001.3781, J. Funct. Anal. 185 (2) (2001), 425–455. (2001) Zbl1078.30041MR1856273DOI10.1006/jfan.2001.3781
  4. Bureš, J., Sommen, F., Souček, V., Van Lancker, P., 10.1023/A:1014923601006, Ann. Global Anal. Geom. 21 (2002), 215–240. (2002) Zbl1025.58013MR1896475DOI10.1023/A:1014923601006
  5. Cnops, J., Malonek, H., An introduction to Clifford analysis, Textos Mat. Sér. B (1995), vi+64. (1995) Zbl0997.15501MR1417718
  6. Dunkl, C., Li, J., Ryan, J., Van Lancker, P., Some Rarita-Schwinger operators, submitted 2011, http://arxiv.org/abs/1102.1205. 
  7. Krausshar, R. S., Ryan, J., 10.1016/j.jmaa.2006.01.045, J. Math. Anal. Appl. 325 (2007), 359–376. (2007) Zbl1107.30037MR2273531DOI10.1016/j.jmaa.2006.01.045
  8. Liu, H., Ryan, J., 10.1007/s00041-002-0026-1, J. Fourier Anal. Appl. 8 (6) (2002), 535–563. (2002) Zbl1047.53023MR1932745DOI10.1007/s00041-002-0026-1
  9. Porteous, I., Clifford Algebra and the Classical Groups, Cambridge University Press, Cambridge, 1995. (1995) MR1369094
  10. Ryan, J., Iterated Dirac operators in C n , Z. Anal. Anwendungen 9 (1990), 385–401. (1990) MR1119539
  11. Ryan, J., 10.1002/(SICI)1099-1476(199712)20:18<1617::AID-MMA926>3.0.CO;2-X, Math. Methods Appl. Sci. 20 (18) (1997), 1617–1624. (1997) Zbl0909.30007MR1486528DOI10.1002/(SICI)1099-1476(199712)20:18<1617::AID-MMA926>3.0.CO;2-X
  12. Ryan, J., Dirac operators on spheres and hyperbolae, Bol. Soc. Mat. Mexicana (3) 3 (2) (1997), 255–270. (1997) Zbl0894.30031MR1679305
  13. Van Lancker, P., Clifford Analysis on the Sphere, Clifford Algebra and their Application in Mathematical Physics (Aachen, 1996), Fund. Theories Phys., 94, Kluwer Acad. Publ., Dordrecht, 1998, pp. 201–215. (1998) Zbl0896.15015MR1627086
  14. Van Lancker, P., Higher Spin Fields on Smooth Domains, Clifford Analysis and Its Applications (Brackx, F., Chisholm, J. S. R., Souček, V., eds.), Kluwer, Dordrecht, 2001, pp. 389–398. (2001) Zbl1009.30029MR1890463
  15. Van Lancker, P., 10.1080/17476930500482614, Complex Var. Elliptic Equ. 51 (2006), 563–579. (2006) Zbl1117.30041MR2230266DOI10.1080/17476930500482614

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.