Rarita-Schwinger type operators on spheres and real projective space
Junxia Li; John Ryan; Carmen J. Vanegas
Archivum Mathematicum (2012)
- Volume: 048, Issue: 4, page 271-289
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topLi, Junxia, Ryan, John, and Vanegas, Carmen J.. "Rarita-Schwinger type operators on spheres and real projective space." Archivum Mathematicum 048.4 (2012): 271-289. <http://eudml.org/doc/251383>.
@article{Li2012,
abstract = {In this paper we deal with Rarita-Schwinger type operators on spheres and real projective space. First we define the spherical Rarita-Schwinger type operators and construct their fundamental solutions. Then we establish that the projection operators appearing in the spherical Rarita-Schwinger type operators and the spherical Rarita-Schwinger type equations are conformally invariant under the Cayley transformation. Further, we obtain some basic integral formulas related to the spherical Rarita-Schwinger type operators. Second, we define the Rarita-Schwinger type operators on the real projective space and construct their kernels and Cauchy integral formulas.},
author = {Li, Junxia, Ryan, John, Vanegas, Carmen J.},
journal = {Archivum Mathematicum},
keywords = {spherical Rarita-Schwinger type operators; Cayley transformation; real projective space; Almansi-Fischer decomposition; Iwasawa decomposition; spherical Rarita-Schwinger type operators; Cayley transformation; real projective space; Almansi-Fischer decomposition; Iwasawa decomposition},
language = {eng},
number = {4},
pages = {271-289},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Rarita-Schwinger type operators on spheres and real projective space},
url = {http://eudml.org/doc/251383},
volume = {048},
year = {2012},
}
TY - JOUR
AU - Li, Junxia
AU - Ryan, John
AU - Vanegas, Carmen J.
TI - Rarita-Schwinger type operators on spheres and real projective space
JO - Archivum Mathematicum
PY - 2012
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 048
IS - 4
SP - 271
EP - 289
AB - In this paper we deal with Rarita-Schwinger type operators on spheres and real projective space. First we define the spherical Rarita-Schwinger type operators and construct their fundamental solutions. Then we establish that the projection operators appearing in the spherical Rarita-Schwinger type operators and the spherical Rarita-Schwinger type equations are conformally invariant under the Cayley transformation. Further, we obtain some basic integral formulas related to the spherical Rarita-Schwinger type operators. Second, we define the Rarita-Schwinger type operators on the real projective space and construct their kernels and Cauchy integral formulas.
LA - eng
KW - spherical Rarita-Schwinger type operators; Cayley transformation; real projective space; Almansi-Fischer decomposition; Iwasawa decomposition; spherical Rarita-Schwinger type operators; Cayley transformation; real projective space; Almansi-Fischer decomposition; Iwasawa decomposition
UR - http://eudml.org/doc/251383
ER -
References
top- Balinsky, A., Ryan, J., Some sharp inequalities for Dirac type operators, SIGMA, Symmetry Integrability Geom. Methods Appl. (2007), 10, paper 114, electronic only. (2007) Zbl1141.15026MR2366908
- Brackx, F., Delanghe, R., Sommen, F., Clifford Analysis, Pitman, London, 1982. (1982) Zbl0529.30001MR0697564
- Bureš, J., Sommen, F., Souček, V., Van Lancker, P., 10.1006/jfan.2001.3781, J. Funct. Anal. 185 (2) (2001), 425–455. (2001) Zbl1078.30041MR1856273DOI10.1006/jfan.2001.3781
- Bureš, J., Sommen, F., Souček, V., Van Lancker, P., 10.1023/A:1014923601006, Ann. Global Anal. Geom. 21 (2002), 215–240. (2002) Zbl1025.58013MR1896475DOI10.1023/A:1014923601006
- Cnops, J., Malonek, H., An introduction to Clifford analysis, Textos Mat. Sér. B (1995), vi+64. (1995) Zbl0997.15501MR1417718
- Dunkl, C., Li, J., Ryan, J., Van Lancker, P., Some Rarita-Schwinger operators, submitted 2011, http://arxiv.org/abs/1102.1205.
- Krausshar, R. S., Ryan, J., 10.1016/j.jmaa.2006.01.045, J. Math. Anal. Appl. 325 (2007), 359–376. (2007) Zbl1107.30037MR2273531DOI10.1016/j.jmaa.2006.01.045
- Liu, H., Ryan, J., 10.1007/s00041-002-0026-1, J. Fourier Anal. Appl. 8 (6) (2002), 535–563. (2002) Zbl1047.53023MR1932745DOI10.1007/s00041-002-0026-1
- Porteous, I., Clifford Algebra and the Classical Groups, Cambridge University Press, Cambridge, 1995. (1995) MR1369094
- Ryan, J., Iterated Dirac operators in , Z. Anal. Anwendungen 9 (1990), 385–401. (1990) MR1119539
- Ryan, J., 10.1002/(SICI)1099-1476(199712)20:18<1617::AID-MMA926>3.0.CO;2-X, Math. Methods Appl. Sci. 20 (18) (1997), 1617–1624. (1997) Zbl0909.30007MR1486528DOI10.1002/(SICI)1099-1476(199712)20:18<1617::AID-MMA926>3.0.CO;2-X
- Ryan, J., Dirac operators on spheres and hyperbolae, Bol. Soc. Mat. Mexicana (3) 3 (2) (1997), 255–270. (1997) Zbl0894.30031MR1679305
- Van Lancker, P., Clifford Analysis on the Sphere, Clifford Algebra and their Application in Mathematical Physics (Aachen, 1996), Fund. Theories Phys., 94, Kluwer Acad. Publ., Dordrecht, 1998, pp. 201–215. (1998) Zbl0896.15015MR1627086
- Van Lancker, P., Higher Spin Fields on Smooth Domains, Clifford Analysis and Its Applications (Brackx, F., Chisholm, J. S. R., Souček, V., eds.), Kluwer, Dordrecht, 2001, pp. 389–398. (2001) Zbl1009.30029MR1890463
- Van Lancker, P., 10.1080/17476930500482614, Complex Var. Elliptic Equ. 51 (2006), 563–579. (2006) Zbl1117.30041MR2230266DOI10.1080/17476930500482614
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.